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Louvain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9 MmWave Array Configuration Impact on Head-Mounted Display Performance
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Abstract—This paper presents a multipath component
(MPC) parameter estimator for indoor environment mapping
that uses the 28 GHz radio band. It employs a commercial-off-
the-shelf (COTS) radio frequency transceiver chipset capable
of beam steering within an azimuth angle range of −78o

and +78o but with only a single RF chain. Existing space-
alternating generalized expectation-maximization (SAGE) al-
gorithms for MPC parameter estimation are designed specif-
ically for multi-antenna systems, with each antenna having
its own baseband representation. By exploiting the beam
steering characteristics, we adapted the SAGE algorithm to
make it suitable for analyzing a single-baseband based multi-
antenna array system. The anechoic chamber measured array
radiation pattern for each steering direction is used in our
algorithm to determine the MPC contribution. In an office
setting, the transmitter and receiver antenna beams are swept.
All backscatter responses are collected for all possible pairs
of transmitter/receiver steering angles, and an angular map
that contains the power profile is produced. The performance
of the proposed algorithm is validated by simulation and
measurement data.

Index Terms—Environment mapping, MPC, baseband,
SAGE, beam steering, multi-antenna array.

I. INTRODUCTION

The emergence of millimeter-wave (mmWave) technol-
ogy has enabled a range of new applications in wireless
communications, such as gigabit-per-second data rates and
ultra-low-latency links. However, the potential of mmWave
is not limited to just communication applications. Due to
their distinctive characteristics, such as high directional-
ity, large bandwidths, and inability to penetrate obstacles,
mmWave signals also provide interesting possibilities for
sensing [1]. The high attenuation of the mmWave signal
can be compensated using beamforming. Beam steering,
which uses a phased antenna array to focus and direct a
beam in a specific direction, has recently gained popularity
because it adds scanning capability to mmWave-based
sensing applications [2].

This has led to increasing interest in the use of mmWave
for integrated sensing and communication (ISAC) purposes.
ISAC is a new research area that aims to utilize the
same transmit waveforms and processing modules for both
wireless communication and radar sensing within a single
system [3] [4]. The primary difference between using a
mmWave system and a radar system for sensing is that a
radar system has multiple radio-frequency (RF) chains and
analog-to-digital converters (ADCs), which enables signal
processing in the digital baseband domain, and it sends
predefined waveforms. The wideband and narrow beam
waveforms existing in mmWave-based ISACs turned to
high-resolution sensing applications [5]. However, these
waveforms are not optimized for sensing purposes as they
are in typical radar systems. Such system requires a robust
and computationally efficient signal processing algorithm
for the extraction of MPC parameters from the received
data of a noisy environment.

A variety of algorithms exist for Multipatch Component
(MPC) estimation in wireless channels. These algorithms
can be divided into three categories: spectral estimation,
subspace-based techniques and maximum likelihood tech-
niques. Multiple signal classification (MUSIC) and estima-
tion of signal parameters via rotational invariance technique
(ESPRIT) algorithms are representatives of the first two
categories, and Space Alternating Generalized Expectation-
Maximization (SAGE) and RIMAX algorithms are rep-
resentatives of the third [6]–[8]. Existing algorithms, on
the other hand, are designed for multi-antenna systems, in
which each antenna has its own RF chain and baseband
representation.

In this paper, we adapt the SAGE algorithm for MPC
parameter estimation by utilizing all joint beam steering
directions of the receiver and the transmitter, which dif-
fers from conventional channel parameter estimation that
utilizes received baseband data for each antenna. When
using a 28 GHz beam steering multi-antenna array, there are
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Fig. 1. Block-diagram of the 28 GHz transmitter.

two challenges to MPC identification. The first is that the
wide beamwidth of the array’s radiation pattern can conceal
smaller MPCs. The second is the presence of high-power
side lobes, which makes it challenging to determine MPC
contributions. The performance of the proposed algorithm
is demonstrated by utilizing the measured power profile in
a typical office environment. In particular, because the pro-
posed approach aims to map the indoor environment using
MPC parameter estimation, we show promising results in
reproducing scatterer angular information.

The original contributions of this study are summarized
as follows:

• This study develops a signal model for phased antenna
array-based beam steering for directional scanning; in
addition, the formulation and implementation of the
adapted SAGE algorithm are presented;

• The channel measurement results from an indoor of-
fice environment at a mmWave band of 28 GHz are
presented and the angular information of all corre-
sponding scattering devices is extracted from MPCs.

The rest of the paper is organized as follows. Section II
presents the signal model. Section III reports the description
of the proposed algorithm, while Section IV discusses
the performed measurement campaign, and the results are
reported. Finally, Section V draws the conclusions.

Notations: in this paper, (·)T denotes the transpose,
| · | represents the amplitude, bold capital letters (e.g. X)
represent matrices, bold lower-case letters (e.g. f ) represent
vectors, and non-bold letters represent scalars.

II. SIGNAL MODEL

In this section, we will consider the signal model when
a mmWave system is used with only a single baseband
chain, and a digitally-controlled phased array that can form
a beam in a direction θm. Such an architecture is shown for
a transmitter in Figure 1 (this architecture will be detailed
in Section IV).

Let us assume that the phased array, when steering in
direction θm, has a radiation pattern f(θl, θm) where θl is
the direction in which the radiation pattern is measured.

Fig. 2. Radiation patterns of the proposed antenna array at different angles

Figure 2 shows such a measured radiation pattern for an
antenna array for different steering directions (the details
of the experimental setup will be given in Section IV).

If the transmitter sends a signal x(t) when the transmitter
is steering in direction θm, the signal sent in direction θl
is given by

x(θl, θm, t) = f(θl, θm) · x(t) (1)

Let us assume that the transmitter and receiver both
have the same architecture (a single baseband chain with
a digitally-controlled phased array) and an identical radia-
tion pattern f(θl, θm) when steering in direction θm. The
channel is considered to be a multipath channel with L
propagation paths that have complex amplitudes αl, depar-
ture angles θTx

l and arrival angles θRx
l , with l = 1, ..., L.

When the transmitter is steering in direction θTx
m and the

receiver is steering in direction θRx
m , the received signal is

given by:

y(θRx
m , θTx

m , t) = x(t)·
L∑

l=1

αlf(θ
Rx
l , θRx

m )f(θTx
l , θTx

m )+n(t)

(2)
where n(t) represent the i.i.d. Gaussian noise. Note that
(2) does not consider the propagation delay, but rather a
narrowband channel (or a single carrier in a multicarrier
system). In the previous development, we also assume that
all propagation is done in the azimuth plane and ignore
elevation.

Let us call Y (θRx
m , θTx

m ) the complex amplitude of a
single received packet (when the receiver steers in direction
θRx
m and the transmitter steers in direction θTx

m ). When
both transmitter and receiver steer in all possible directions,
the collected complex amplitudes will create a 2-D matrix
Y that should show peaks at the angles of the MPCs
(θRx

l , θTx
l ). The size of Y is KRx × KTx, where KRx

and KTx represent the number of steering directions for
the receiver and the transmitter, respectively.
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Such a 2-D map is shown in the experimental result
in Figure 4, where the colormap represents the power
spectrum as a function of transmit and receive steering
angle. In this figure, the Line-of-sight can be clearly be
observed at (θRx

l , θTx
l ) = (0◦, 0◦). The contribution of

the reflected paths (at (θRx
l , θTx

l ) = (30◦,−30◦) and
(θRx

l , θTx
l ) = (−30◦, 30◦)) can also be observed, but are

more difficult to distinguish from the sidelobes of the
antenna array (for example at (θRx

l , θTx
l ) = (0◦, 60◦)). The

SAGE algorithm presented in the next section allows us to
identify the contributions of the MPCs without ambiguity
by exploiting knowledge of the radiation pattern.

Based on (2), the signal model for the contribution of a
single MPC to Y is given by:

Sl = αl · fT (θRx
l ) · f(θTx

l ) (3)

where f(θRx
l ) is a 1 × KRx vector containing the value

of the radiation pattern of the receiver in direction θRx
l

for all receiver steering directions θRx
m . Similarly, f(θTx

l )
is a 1 ×KTx vector containing the value of the radiation
pattern of the transmitter in direction θTx

l for all transmitter
steering directions θTx

m . By considering (2) and (3), it can
be observed that

Y =

L∑

l=1

Sl +N (4)

where N is a KRx × KTx noise matrix containing i.i.d.
Gaussian elements, representing the noise on the complex
amplitude for each transmiter and receiver steering direc-
tion.

III. ALGORITHM

The SAGE algorithm is a popular method for multipath
parameter estimation in wireless communication systems,
which can take into account calibration and antenna pat-
tern characteristics. It is a maximum-likelihood estimator
that uses an iterative approach to estimate the multipath
parameters from the received signal [9], [10]. It has been
extensively researched in the literature in a variety of
scenarios, including indoor and outdoor environments, as
well as various wireless communication standards such as
Wi-Fi, cellular, and satellite communication [9].

One of the main problems of using beam steering arrays
for environment mapping is the presence of high sidelobes
in the antenna array, as shown in Figure 4. While strong
contributions (such as the Line-of-sight) can easily be
identified, it is more difficult to distinguish whether smaller
contributions are multipath components or contributions
from the sidelobes of the antenna array.

The SAGE algorithm relies on iterative Expectation-
Maximization (EM) steps. The observable data of the lth

MPC is computed using the first estimates of the L − 1
MPCs in the expectation step. This step consists of remov-
ing the first L − 1 estimated MPCs from the measured
channel matrix. If the first L−1 MPC estimates are reliable,

there will only be the lth MPC’s contribution left. The
spatial parameters (angular and temporal) of the lth MPC
are then updated in the maximization step, alongside its
estimated amplitude. The algorithm converges when the
variance in the parameter estimates between two subsequent
iterations falls below a predetermined threshold. It should
be noted that the initialization step is crucial in the SAGE
algorithm to guarantee that the algorithm converges to the
global optimum (rather than a local one).

The main difference of the algorithm used in this paper
concerns the signal model: instead of having received
baseband data for each antenna (as is the case in classical
MIMO channel estimation), our algorithm exploits the
received baseband data for each steering direction of the Tx
and Rx arrays’ beam. This requires careful measurement of
the array’s radiation pattern (for each steering direction) but
allows our algorithm to distinguish contributions of MPCs
from contributions due to sidelobes of the antenna array.

A. Expectation-Maximization algorithm

The expectation and maximization step are repeated iter-
atively for each MPC l, for a certain number of iterations.
In these two steps, the observable data for each path,
along with their angular parameters, are estimated until they
converge using the threshold method.

Expectation step: In this step, the estimation of the ob-
servable data of the lth path is performed by removing L−1
path contributions (i.e. the most recent MPC estimates), as
shown in the following equation:

X̂
(i)
l = Y −

L∑

l′=1,l′ ̸=l

S
(i)
l′ (5)

where Y is the 2-D matrix containing all measured complex
received amplitudes (for all transmit and receive steering
directions), and S

(i)
l′ is the signal model defined in (3) for

MPC l′ at the i-th iteration.
Maximization step: in this stage, all the parameters of

MPC l are updated (from iteration i to iteration i + 1) as
follows:

(θ̂
Rx(i+1)
l , θ̂

Tx(i+1)
l ) = argmax

(θRx
m ,θTx

m )

(|X̂(i)
l |) (6)

where the search is performed over all elements of X̂(i)
l , i.e.

overall steering directions of the transmitter and receiver
array. In other words, since X̂

(i)
l is supposed to contain

only the contribution of the l-th path (if the expectation
step was effective), the indexes of the maximum in the
power spectrum indicate the directions of the l-th MPC.

The complex amplitude α
(i+1)
l is updated as follows:

α
(i+1)
l = X̂

(i)
l (θ̂

Rx(i+1)
l , θ̂

Tx(i+1)
l ) (7)

In other words, the complex amplitude of path l is that of
X̂

(i)
l at the maximum value in it’s power spectrum.

3



B. Initialization stage

As mentioned previously, it is important to properly ini-
tialize the parameters (α

(0)
l , θ

Rx(0)
l , θ

Tx(0)
l ) for l = 1, ..., L

for the SAGE algorithm to converge to the global optimum.
During the initialization step, each individual path’s

parameters are initialized by successive path cancellation
from the received signal strength matrix Y. First, the
residual measurement for the previously estimated paths
is computed:

Yres,l = Y −
l−1∑

l′=1

S(l′) (8)

Then, the parameters of the lth path are estimated from the
residual measurement:

(θ̂
Rx(0)
l , θ̂

Tx(0)
l ) = argmax

(θRx
m ,θTx

m )

(|Yres,l|) (9)

Similarly, the complex amplitude is estimated as follows:

α
(0)
l = Yres,l(θ̂

Rx(0)
l , θ̂

Tx(0)
l ) (10)

Such an initialization relies on the fact that the highest peak
in the power spectrum of the (residual) measurement must
indicate the presence of an MPC.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental setup

The software defined radios (SDRs), up- and down- con-
verter, and multi-antenna arrays are the three different com-
ponents used to realize the 28 GHz SDRs-based transceiver
system. The SDRs are used to process signals at sub-6 GHz
(i.e. to generate the baseband and intermediate frequency
signals). The up- and down-conversion components are
used to convert the signal to 28 GHz and to sub-6GHz,
respectively. An antenna array receives the upconverted 28
GHz RF signal for transmission, with a digital control port
controlling the beam direction. Figure 1 depicts the block
diagram of the proposed 28 GHz transmitter; the receiver
has a very similar block diagram.

We employ a phased array antenna system to generate
and steer beams towards different directions in the indoor
environment. Figure 2 shows the proposed antenna array
radiation patterns at given steering angles. It is demon-
strated that the maximal directions of the patterns change
depending on the beam steering angles. The received signal
strength information at various points in the environment
is collected and processed using the SAGE algorithm to
estimate the angular information of the MPCs. Figure 3
depicts the environmental setup.

B. Results

The matrix of measured complex amplitudes Y mea-
sured in the environment was fed into the SAGE algorithm
to obtain parameter estimates for a given number of paths.
The antenna radiation pattern of the antenna array was mea-
sured in an anechoic chamber (for each steering direction)
to obtain the vector f(θl) for all values of θl.

Fig. 3. Scenario of the measurements.

Fig. 4. Power spectrum as a function of transmitter and receiver steering
angle. The MPCs estimated with SAGE are superimposed to the power
spectrum, and identified as the LOS, wall reflection, and metal cabinet
reflection.

The power spectrum of the measured data is shown in
Figure 4. It can be seen that the power associated with
MPCs and the sidelobes associated with the LoS path are
in the same order of magnitude, highlighting the necessity
of using an algorithm that is able to include the effect of
the radiation pattern.

The proposed SAGE algorithm extracts angular infor-
mation successfully, as shown in Figure 4 for the scenario
depicted in Figure 3. From the figure, the estimated MPCs
are pointed by colored circular circles. The LoS path has
a power 5 dB higher than non-LoS (NLoS) paths and
contributes significantly to 28 GHz wave propagation in an
indoor environment. The second most powerful MPC is the
wall reflection, The metal cabinet reflection has the lowest
power. Although there are a limited number of MPCs in this
experiment, the proposed algorithm produces a promising
result; however, as the number of paths increases, more
parameters are required to distinguish between the various
paths.
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V. CONCLUSION

In this paper, we use the SAGE algorithm to perform
a preliminary identification of MPC contributions. A 28
GHz beam steering transceiver architecture based on SDRs
with 4X4 antenna arrays was presented. The suggested
SAGE algorithm utilizes the provided multi-antenna array
radiation pattern for each steering direction to distinguish
the MPC contribution. In an indoor setting, a preliminary
measurement campaign was carried out. The walls and
metal cabinets within the indoor environment are then
located using the estimated angular information. After
analyzing the experiment results, we concluded that the
proposed SAGE algorithm can provide accurate estimates
for nearly all MPCs if the channel contains only a few
MPCs and experiences moderate power decay.
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Abstract—Passive Wi-Fi based Radars (PWR) are devices that
can localize targets using a Wi-Fi signal-of-opportunity transmit-
ted by an Access Point (AP). The recent development of Wi-Fi
Sensing has led to a growing interest in the use of multistatic
radar configurations, combining the estimated target parameters
from multiple transmitters and receivers to jointly perform target
localization. On the one hand, the Maximum Likelihood (ML)
framework can be used to perform Angle of Departure (AoD)-
based localization of multiple targets. However, it requires a
high complexity multi-dimensional search. On the other hand,
MUSIC reduces the complexity to a one-dimensional search but
no framework is derived for the combination of multiple bistatic
pairs. In this paper, the relationship between MUSIC and ML
estimators is exploited to perform an ML subspace based AoD
estimation. In addition to the passive radar processing based on
known OFDM preambles transmitted by the APs, the proposed
method also exploits the AoD information contained in the
Beamforming Feedback (BFF) transmitted by the clients during
the channel sounding session. This low level data combination
of multistatic information, obtained from preambles and BFFs,
outputs a surveillance map from which targets detection can be
performed using a Constant False Alarm Rate (CFAR) detector.
A numerical analysis is presented to assess the accuracy of the
proposed combination method and to demonstrate its benefit
compare to other fusion methods.

Index Terms—Passive Wi-Fi Radar, Multistatic, Data Fusion,
Maximum Likelihood, MUSIC, Beamforming Feedback.

I. CONTRIBUTIONS

Our contributions can be summarized as follows:
• We propose a low level data fusion methodology based on

the Maximum Likelihood (ML) framework for Angle of
Departure (AoD)-based localization of K human targets
in a multistatic Passive Wi-Fi based Radar (PWR) con-
figuration. The method exploits the relationship between
the MUSIC and ML estimators shown in [1] to reduce
the complexity of the K-dimensional search of the ML
estimator into K one-dimensional problems solved by
MUSIC.

• Our method combines the AoD estimations from multiple
Access Point (AP)-PWR pairs (based on known pream-
bles) with the estimation from Beamforming Feedbacks
(BFFs) sniffed during the channel sounding session ini-
tiated by the APs with its clients.

II. SYSTEM MODEL

In this work, we use a multistatic configuration with multi-
ple transmitter APs and only one receiver PWR. The positions
(xk, yk) of the targets are determined only from their estimated
AoD ϕk. The baseband equivalent channel model is estimated
either by the client,to build its BFF, or the PWR from the
NDP transmitted by the AP. As we focus on a AoD-based
localization, the full channel model knowledge is not exploited
and the channel coefficients across receiving antennas and
subcarriers are estimated independently. The channel model
can thus be simplified as

Hq(Φ) = XqA
H(Φ) +Nq, (1)

where Xq is a (M × K) matrix of channel coefficients and
A(Φ) = [a(ϕ1), . . . ,a(ϕK)] is the AoD steering matrix
(N × K). M (resp. N ) is the number of transmitting (resp.
receiving) antennas and K is the number of targets.

III. DATA FUSION FROM ML TO MUSIC
We show that the ML function from each bistatic pairs can

be approximated by

L(Φ̂) ≈ QN

2σ2

K∑

k=1

s̃k aH(ϕk)Γ̃a(ϕk). (2)

where Q is the number of subcarriers and σ2 is the noise
variance. The terms s̃k and Γ̃ are estimated by the proposed
method with a one-dimensional search based on MUSIC
outputs. The surveillance map is then obtained by adding the
individual likelihood functions.
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IV. SIMULATION RESULTS

Monte-Carlo simulations are performed to assess the im-
provement brought by the proposed fusion process on the
localization accuracy compared to the two other methods. For
each simulation, 2 targets and 1 client device are randomly
placed in an (x, y) map of size 40×30[m]. The figure displays
the surveillance map obtained with the proposed combination
method.
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Abstract—People counting and detection technologies have
shown great versatility in various scnearios and have become an
important tool for event organizers and city planners to optimize
their operations. This paper presents a novel approach for peo-
ple counting using Micro-Doppler Signatures (MDS) extracted
from a Frequency-Modulated Continuous-Wave (FMCW) radar
operating at 77GHz. The system utilizes the unique gait model
of each individual, which results in a distinct MDS, to classify
groups of different sizes using a Convolutional Neural Network
(CNN). The proposed system overcomes the limitations of existing
people counting techniques such as the need for a clear line of
sight and being affected by lighting conditions

Index Terms—group counting, radar signal processing, 77 GHz
FMCW radar, CNN, micro-Doppler signature

I. INTRODUCTION

In recent years, with the increased concern in public safety,
there has been a growth in the demand for crowd surveillance
and safety management systems. The estimation of crowd
dynamics can help in preventing unanticipated accidents or
issues in case of mass events or be of use for city planners
to improve the daily commutes of it’s citizens. These systems
can be implemented in various ways as, for example, image
or video-based techniques. However, radar-based crowd mon-
itoring systems are being considered due to their non-invasive
properties and ability to work in low lighting conditions, things
that the previous systems are lacking.
When it comes to counting people in a scene with a radar,
most existing works in the literature consider an indoor, office-
like environment where a few individuals (less than ten in
practice) are mobile. Since people in this environment move
at very low speeds, the radar mostly relies on the range
information to estimate the number of individuals in the
room [1]. Most of the existing radars for people counting are
based on the impulse-radio ultrawideband (IR-UWB) wave-
form, which compared to Frequency Modulated Continuous
waveform (FMCW) provides a much better range resolution
but poor Doppler resolution. Low-accuracy estimates achieved
with a mm-wave FMCW radar can also be improved by

using information coming from other devices like cameras [2]
or by finely observing the vital signs like the heartbeat or
the breathing rates with the radar. [3]. Recently, it has been
shown that applying Machine Learning and Deep Learning
algorithms to radar data improves the system performance [1]
[6]. However, these algorithms rely on just range information
or Range Doppler Maps (RDMs) as inputs to the network.
Distinctly, in this work we will use the Micro-Doppler Signa-
tures (MDSs) as input to our Convolutional Neural Network
(CNN). Furthermore, we will target an outdoor pedestrian
street scenario where people are typically walking together
in groups.
The rest of the paper is organized as follows : Section II
describes the fundamental workings of the FMCW radar. Next
Section III explains the human gait modelling along with the
simulation scenario. Section IV presents the CNN architecture
and the results achieved. Finally, we conclude this paper and
discuss future directions in Section V.

II. SYSTEM ARCHITECTURE

A. FMCW Radar system

Frequency-Modulated Continuous-Wave (FMCW) radar is a
type of radar that operates by transmitting a continuous wave
signal that is modulated with a linear frequency ramp. This
ramp causes the transmitted signal to continuously increase
or decrease in frequency over time. This transmitted signal
is called a chirp. The FMCW signal is composed of a finite
series of K chirps, each of instantaneous frequency linearly
increasing with the time.

When the transmitted signal encounters a target object,
some of the signal is reflected back to the radar receiver. The
received signal is then mixed with the transmitted signal and
low-pass filtered to cancel out replicas at twice the carrier
frequency. The resulting frequency is proportional to the
distance between the radar and the target object. By analyzing
the resulting frequency signal, FMCW radar can determine
the range, speed and, in case of multiple antennas, Angle
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(a) Single person MDS (b) Two people MDS (c) Three people MDS (d) Four people MDS

Fig. 1: First class label

(a) Five person MDS (b) Six people MDS (c) Seven people MDS (d) Eight people MDS

Fig. 2: Second class label

(a) Nine person MDS (b) Ten people MDS (c) Eleven people MDS (d) Twelve people MDS

Fig. 3: Third class label

of Arrival (AoA) of target objects. This work is based on
the Texas Instrument AWR1843 FMCW radar operating at
77GHz. Focusing on chirp k and denoting each chirp duration
by T and the frequency bandwidth swept as B the time can
be expressed as :

t = kT + t′ (1)

where k = 0, · · ·,K − 1 and t′ ∈ [0, T ]. This enables us to
write the instantaneous frequency as:

fi(t) = βt′ (2)

where β = B
T is called the frequency slope. The transmitted

signal is then mathematically expressed as:

s(t) = cos(2πfct+ ϕi(t)) (3)

where fc is the radar carrier frequency and ϕi(t) is the
instantaneous phase resulting from the FMCW modulation
equal to :

ϕi(t) = 2π

∫ t

u=0

f(u) du

= πkβT 2 + πβt′2
(4)

At the receiver, the resulting baseband signal caused by a
single target reflection is

x(t) ≈ κ exp(j2πfBt
′) exp(j2πfDkT ) (5)

where κ is a complex factor that integrates the gain and all
constant phase terms. By measuring fD and fB the targets
velocity and range can be resolved respectively since they are
defined as :

fD = 2
vfc
c

(6)

fB = 2
R0β

c
(7)

where v denotes the targets speed , R0 the targets range and
c the speed of light.
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Fig. 4: CNN Architecture

B. Radar Signal Processing

A 2D matrix of size K × L is formed by acquiring and
sampling the mixed signal accros consecutive chirps for a sin-
gle transmit antenna, with K being the number of transmitted
chirps and L the number of samples per chirp. Next the Range-
Doppler Map (RDM) is computed by first taking a Fast Fourier
Transform (FFT) along the fast time for all chirps to obtain the
so-called Range Rrofile (RP) containing the range information
of the targets, followed by another FFT along the slow time to
obtain Doppler information. Before performing the respective
1D FFTs, a mean subtraction is performed along both fast time
and slow time.
However, in cases of groups walking together it is not possible
in the RDM to distinguish and count the number of people
as they appear as a single peak in the RDM. As discussed
previously the frequency components of the targets will vary
over time. In such way, the standard Fourier Transform is
not suitable since it projects the signal on infinite sinusoids
which are totally not localized in time and thus, it provides
the frequency information averaged over the whole signal time
interval. In these cases, it is necessary to move from mono-
dimensional solutions to bi-dimensional functions (functions
depending on both time and frequency) such as the Short Time
Fourier Transform (STFT). Thus, our radar processing is as
follows :

• Determine the RDM using a 2-D Fourier Transform.
• In the RMD, detect the group by finding the maximum

power peak.
• Extract and concatenate the resulting peak index across

all chirps in the RP.
• Perform STFT on the concatenated signal to extract the

spectrograms i.e, MDS.

III. HUMAN GAIT MODELLING

To study how the MDS evolve with the increasing number
of targets in the scene, it is inevitable to resort to simulations
based on either mathematical or empirical models. A fre-
quently used empirical model to generate micro-Doppler gait
signatures is the global human walking model developed by
Boulic, Magnenat-Thalman and Thalman [5]. The model gen-
erates the signatures by describing the position and orientation
of 12 different human body parts. However, in this work we
will consider just the torso as our point target, superimposed
to the groups average speed. This is done because the torso
appears as the maximum power in these signatures. Examples
of simulated MDSs for different group sizes can be seen in
Figs.1,2,3. Here it must be noted that the simulated MDS are of
targets moving away from the radar, which we are considering
as a positive frequency shift.

IV. SIMULATION AND CNN RESULTS

A. Dataset Simulation and Class Lables

We simulate varying group sizes (1-12 people) in a pedes-
trian street. For each group size 100 MDS are simulated
and generated leading to a dataset of 1200 MDS samples.
These MDSs are then fed to a CNN in order to perform a
classification task to estimate the group sizes. Some examples
of the MDSs generated can be seen in Fig. 1,2,3. The goal is to
count and classify different groups of people, thus we build our
classes based on intervals of number of people. Considering
3 groups classes, the class lables decided are as follows :

• Class 1 : 1-4 people - Low sized group
• Class 2 : 5-8 people - Mid sized group
• Class 3 : 9-12 people - High sized group

B. CNN Architecture

A classical CNN architecture is implemented here, and
displayed in Fig. 4. It consists of a features extraction part
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with NC = 3 convolutional blocks, and a classification part
with NFC = 3 fully connected (FC) layers followed by a
softmax layer. Each MDS is scanned by the convolutional
layers, followed by a rectifier linear unit (ReLU) layer and
a max pooling. After each set of convolutions followed by
the ReLU and the max pooling, the size of the convolutional
filters is decreased and their number is increased. This is done
to scan the MDS at each step with a finer resolution filter so
that the CNN can extract different and finer features at each
step. The ReLU activation function was chosen for its ability
to handle the vanishing gradient problem [6]. To handle the
complex values of the MDS its real and imaginary parts are
treated as separate channels.

C. Classification Results
As can be seen in Fig. 5 the proposed CNN architecture

achives an accuracy of around 88% for the considered classes
on the testing set. Especially for the low and high sized groups
the model achieves a better accuracy as the MDS are quite
distinct compared to the mid sized group.

Fig. 5: Confusion Matrix for 3 classes

V. CONCLUSION AND FUTURE WORK

In conclusion, we investigated the problem of radar based
group counting using micro-Doppler signatures. We proposed
a simulator based on the Boulic, Magenat-Thalman and Thal-
man model to generate spectrograms for varying group sizes.
We tackled counting as a classification problem, and applied
a CNN on the generated MDS and obtained high accuracy
results for counting.
Future work includes an extensive measurement campaign and
dataset collection, comparing the CNN architecture proposed
to other Machine Learning methods and tackling larger group
sizes.
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Abstract—In a communication system with steerable laser
beams, the transmitter must find the direction towards the
receiver. This requires a feedback loop such that the receiver
can signal that the correct direction has been found. However,
the receiver may not be able to instantly give high-resolution
feedback if the beam hits its detector. At least during the acqui-
sition phase, thus before transmitter and receiver are aligned
in both directions, this feedback channel typically has a wider
beam and a much lower bandwidth, thus a (possibly random)
latency and a lower time resolution. It is often not practical to
adaptively widen the optical beam during acquisition, but even
if one designs for an adaptive beam width, it is not evident
that this accelerates the search as we argue in this paper. The
paper also describes a suitable address coding scheme based
on maximum-length Linear Feedback Shift Register sequences,
that accelerates the search significantly.

I. INTRODUCTION

In optical wireless communications, it is a challenge to
ensure that the laser beam covers the target client device. As
it requires real-time knowledge of the direction towards the
counter station, which may not always be available during
the set up of a link. For LED-based communication systems,
it is often solved by projecting a wide beam over a coverage
area so that every possible position is covered within the light
beam. This leads to a relatively weak signal, which limits the
achievable bit rate. Lasers create more coherent light than
LEDs and give more confined beams. Lasers also have a
much broader modulation bandwidth than LED. But working
within eye-safety limits for indoor optical communications
means that using a relatively high power is prohibitive.
Nonetheless, the use of a narrow beam is preferred for high
bit rates and low power consumption.

The acquisition system may use a feedback loop such that
the client device can transmit back when the beam from the
central station found the correct position of the client. This
feedback loop may have to use a wider beam, thus use a
lower bandwidth, and may have unknown latency and timing
offsets caused by creation and scheduling of data packets.

There are examples that report practical implementation of
the search systems but that proves to be time-consuming [1],
low precision, and power inefficient due to a large beam spot
[2]. However, little literature has been devoted to quantified
models for the benefits or drawbacks of a narrow beam, for
instance in terms of acquisition search time. Also, the use of

dedicated training and addressing sequences is yet not heav-
ily researched. The idea of embedding identifiers or address
codes was presented earlier, in [3], for the purpose of channel
estimation and to identify the relative light contribution from
multiple emitters, but not yet for beam steering.

This paper, to our knowledge, is one of the first in
literature that models and evaluates the challenge of position
acquisition. We propose a novel method of encoding the
direction (or target position) of a steerable device using a
linear feedback shift register (LFSR) code. This can improve
the search time, compared to conventional address labeling.

For the time being, we ignore limitations caused by the
mechanical time response of the steering devices. These
may have a large impact on overall search time, but we
believe that with the development of integrated photonic
steering, mechanical effects would become less relevant,
even to the point of not being the main limitation. We focus
on limitations caused by the required energy per bit that the
detector needs to recover an identifier embedded in the beam.

This paper is organized as follows: Section II and III
formulate the model that shows that widening a beam may be
counterproductive to accelerate beam searching. The choice
of the beam width is described in Section IV. Section V
proposes the use of an LFSR instead of discrete addresses.

II. SYSTEM MODEL

A. Considerations for a width of the search beam

Depending on its design, an OWC system with highly
directional beams may have to execute a 4-dimensional
search for the transmitter and receiver to align. Acceleration
may be if the transmitter sends directional identifiers as
it sweeps over the coverage area in search of its receiver
location. If the receiver sees an identifier, it reports this via
a feedback channel. However, this feedback channel is likely
to have a lower bit rate and may have an unknown, variable,
and possibly large delay.

In a typical communication setting, a received bit needs
to have at least a certain minimum electrical energy to allow
reliable detection. In an OWC receiver, a photodiode converts
an arriving light intensity, that is, an optical power into an
electrical signal current or voltage. The electrical power is
proportional to the square of the optical power arriving at
the detector.
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This has an intriguing consequence if one has to send a
message to a detector of size AD, if the detector is located at
an unknown location in a coverage area AC that has N times
the area of AD: AC = NAD. Sending the message N times
sequentially at full power sending a narrow beam AB = AD

is much faster than sending a message once, simultaneously
to all possible locations, with AB = AC . The latter yields
a signal-to-noise ratio (SNR) that is N2 smaller than in the
former strategy. Thus, to obtain the same received energy
per bit, the latter system must run at a bit rate that is N2

slower, but it only needs to send the message once. The
former strategy (N times a narrow beam) is N times faster
than the latter (one broad beam). The comparison would be
different for RF. For RF, the two scenarios would be equally
fast. To our knowledge, this effect has not been reported
before. However, it implies that the design of an OWC needs
to take the specific properties of SNRs into account.

A transmitter beams an optical power of ΦT to a target
receiver. If a detector captures the arriving photons by means
of a detector with effective area AD and the light intensity
is uniform over AB with AD << AB , the received optical
light intensity, i.e., the optical power is

ΦR =
AD

AB
ΦT (1)

A photodiode converts an incoming photon into a hole
electron pair. Hence, the electron current is proportional to
the photon density, thus to the electrical power is

PR,el = h2η2RΦ
2
T . (2)

The responsivity ηR expresses the efficiency of converting
photons into electrons (amperes per watt). We defined the
pathloss h for an optical system as ho being the ratio of the
optical received light intensity ΦR over the transmit light
intensity ΦT . In lossless media, the law of conservation of
energy implies that the entire light transmit power flows
through AB , thus ho = AD/AB . So, the electrical received
power relates to h2 = A2

D/A2
B . This differs from hRF in

radio links where the power gain is inversely proportional to
the beam width. For an optical system, the extra square in the
received power has large consequences for an optimum sys-
tem choice for AB . For comparison, according to expression
for RF free space loss, the electrical received power relates
to h2

RF = AD/AB if we take for AD the antenna aperture
and AB the effective beam width.

Already (2) shows that increasing the radius of the beam
but keeping to the total optical power constant reduces the
energy per bit by the fourth power of the radius. However, for
a fixed coverage area AC , the number of positions that the
beam needs to test grows with the square of the beam radius.
Therefore, considering that the required energy per bit is a
modulation constant, it is apparent that widening the laser
beam may be counterproductive as the duration of sending
each identifier will be also increased.

Most of the laser beams used in optical communications
have, in good approximation, a Gaussian intensity distribu-
tion. Getting and keeping the center of the beam aligned with

the detector is one of the key challenges for the system. Here,
we address an approach for acquisition of the beam direction
by a search.

B. Search time and effect of the beam size

The search time Tscan can be interpreted as the product
of the number of bits per address ID, the number of different
directions into which such an ID has to be sent times the bit
duration. The beam width has a strong influence on the bit
rate that can be used.

Considering a minimum required energy per symbol, the
number of symbol levels that can be carried in M -PAM, thus
with m bits per symbol can be obtained following [4] or Eq.
(9) in [5]

M2 = 22m = 1 +
h2Φ2

T

κΓN0fmax
(3)

where Γ is a modulation gap that is derived from bit error
rate (BER), N0 is a noise floor, κ is a noise enhancement
that may occur of its parasitic capacitances of the PD needs
to be compensated, and the bit rate is Rb = 2m · fmax. We
take κ = 1. If the detector die has a large size, measures to
mitigate the capacitance may lead to a noise enhancement
κ > 1 that grows with fmax. This may reduce the bit rate at
which a very focused beam can be sent. Evaluation of this
effect is outside the scope of this work and will be reported
later in detail. To carry M -PAM with m bits per symbol, (3)
reveals the need for minimum SNR, with

SNR =
h2Φ2

T

κN0fmax
≥ Γ(M2 − 1). (4)

If a certain signal power is available at the receiver and if
the bandwidth fmax is limited beforehand, one may use the
highest fitting M . If we restrict M to a power of 2 (integer
m), this gives Rb = 2fmax log2 M , thus

Rb = fmax

⌊
log2

(
1 +

h2η2RΦ
2
T

κΓN0fmax

)⌋
. (5)

To simplify beam detection, m = 1 (OOK) or even bi-phase
(Manchester) encoding may be preferred. To carry OOK, a
minimum energy per bit is needed to ensure that in the above
expression 1

2 ⌊log2 (1 + ...)⌋ ≥ 1 bit per symbol. We can
rewrite the equations to express the highest achievable bit
rate, by taking the highest possible fmax that gives adequate
SNR:

Rb = 2fmax ≤ 2h2 η
2
RΦ

2
T

κΓN0
. (6)

Via h2, this is inversely proportional to A2
B .

C. Address Identifiers

To encode the beam direction from the steering device
with a resolution of AR, we need Nb = ⌈log2(AC/AR)⌉
bits. One may argue that for a beam spot size AB and a
uniform light level, it would be adequate to use AR = AB .
However, this paper focuses on a pointing accuracy that aims
the center of the beam towards the detector, thus AR = AD.
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Fig. 1. The influence of the misalignment between the center of a beam with a Gaussian intensity profile and the photodetector. a) for different detector
sizes AD for ΦT = 1 mW and b) for different beam sizes AB for ΦT = 2.5mW.

If the beam has a Gaussian distribution, this gives the highest
SNR. We need Nb = log2(AC/AD) bits. Taking into account
Nh header bits, synchronisation bits, and other overhead, the
time TP spent per position follows from

TP =
Nb +Nh

Rb
. (7)

Typically, scanning occurs over NY lines, in each of which
NX positions are checked, with Nb = NXNY . We do not
consider mechanical speed limitations.

The key challenge of the steering mechanism is to align
the beam optimally with the detector, therefore the desired
resolution of the system is AR = AD. The number of
positions for which an Address ID is needed is the size of the
entire coverage area AC divided by the required resolution
AR: we need ⌈log2 AC/AR⌉ bits for the addresses. In a
typical system, the coverage area may be scanned as NY

lines of NX positions on each line. Then NY NX ≈ AC/AR

where the approximation is because it ignores overlaps of
AR footprints to contiguously cover the entire area AC .

D. Signal strength-limited systems

For any M -PAM, a minimum energy per bit Eb is needed,
but OOK (M = 2) is the most power efficient. If excess
power is available, we use that to make the symbol duration
shorter (thus allowing very high fmax) rather than to increase
M . For OOK, we find a scan time that equals the number
of bits per address times the number of addresses times the
duration of transmitting one bit:

Tscan = 2

(
log2

AC

AR
+Nh

)
AC

AR

κΓN0

h2η2RΦ
2
T

. (8)

If we insert h = AD/AB , the counterproductive effect of
increasing beam width becomes evident, as it reduces the
received power and leads to Tscan ∝ A2

B :

Tscan = 2

(
log2

AC

AR
+Nh

)
AC

AR

A2
B

A2
D

κΓN0

η2RΦ
2
T

. (9)

We will compare the system performance as a function of
Φ2

T /N0, thus for the same transmit power ΦT and the same
link budget. That implies that the SNR differs per system,
depending on AB and on the bandwidth fmax that the system
can use. We explicitly note that comparing systems for the
same SNR would be misleading. For Manchester encoded
signals, a similar expression is found, considering rate 1/2
but it tolerates a lower signal power.

III. COMPARISON OF SCAN TIMES

The scanning strategy needs to send AC/AR address IDs
and that a wider beam implies that a client device receives
AB/AR such addresses and picks the one that is received at
the highest strength. However, that is not the fastest strategy.
Accelerated scans may need to change the beam width in
successive scan steps to zoom-in after initially finding a
position hit at limited AB resolution. We leave that for
further optimization.

Changing the beam size does not show linear dependencies
of the scan time, as it also influences the SNR, thus the
feasible bit rate. Increasing the beam size AB also increases
the time scan Tscan thus resulting in a slower acquisition 2.
Therefore, it urges to use the smallest possible beam size AB

to minimize Tscan. Ideally, AB = AD. From Figs. 2 and 3
is it evident that for the proposed model, making the beam
size larger does not result in a more effective scan. In later
work, we will elaborate on this relation, and on appropriate
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Fig. 2. The influence of Φ2
T /N0 over scan time for system with different

widths of the beam.

choices for AB . In fact, we see that AB preferably is kept
small.

Fig. 3. Time to acquisition versus the size of the beam for the system with
transmit power ΦT = 1 mW, detector size AD = 1 mm2, and a noise
floor N0 = 10−14 W/Hz.

Fig. 4. Packetized address ID, similar to System 1 and 2. Yellow circles:
beam are AB . Grey: the area in which the first packet can be received
fully. In this example, packets contain a header and three address bits. The
resolution AR ≈ AB .

IV. BEAM WIDTH CHOICE

It is possible to use two different laser beams for com-
munication and detector acquisition. But as we saw earlier,
it is better to have a high bit rate channel for the searching
part as well, as it directly affects the scan time. Therefore,
it is reasonable to use one laser beam for both scanning
and communication as it also simplifies the system. Then

a switch is needed to go from the searching phase into
communication.

During a search, there are different approaches to encode
direction addresses to identify the position of the steering de-
vice as a modulation into the beam data. For the comparison
of suggested systems, we keep key parameters constant. The
responsivity of the photodetector η = 0.7 A/W, size of the
detector is AD = 1 mm2, noise floor N0 = 10−14 W/Hz and
coverage area AC = 16.8 m2. For BER = 10−4, modulation
gap Γ = 4. Number of the bits for the header Nh = 64.
Transmit power ΦT has been chosen in a way to guarantee
eye-safe communication for all systems considered.

1) System 1: One, seemingly attractive option is to start
with a beam that is artificially made very wide to have fewer
steps for each scan line and to send a full address to each
step-position which is how we modelled System 1. But this
approach has several downsides. Firstly, beams usually have
a Gaussian profile. If the system is not aligned perfectly, we
can spot drastic losses in received power (Fig. 1). This leads
a lower than ideal energy per bit, a lower signal-to-noise
ratio and a higher BER.

Having a wide and uniform laser beam that is also used
during communication, AR = AB may be adequate, similar
to Fig. 4 as we only need to illuminate each position
once. This would mean that the number of scan steps can
be lower than for the same system with a smaller laser
beam. However, we benchmark for AR = AD. In Gaussian
beams, the irradiance gradually decreases from the center
towards the edges. If the system is not perfectly aligned, the
received power drops so it becomes challenging to satisfy the
minimum energy per bit requirement. Also, even for uniform
beams, it is preferred to align the detector with the center of
the beam to avoid potential imbalances in the system. For
example, if the laser beam vibrates due to device motions,
it is best to place the detector in the middle, to minimize
the chance that it falls out of the beam. Secondly, for this
case, for every point (thus for every step in the scanning)
we need to send a full address packet including overhead
such as a synchronisation header and error correction. Fig. 5
shows that to ensure adequate received energy per bit, a wide
beam requires a dramatic reduction in modulation speeds
that counter-productively reduces scan speed. It outweighs
the number of bits per position, therefore System 1 is slower
than System 2.

2) System 2: The second approach makes the beam size
smaller (ideally to AB = AD), which would boost the energy
per bit. For System 2, with the same resolution (AR = AD),
we have the same problem as for discrete search, we have to
use full addresses with a sync header. During a continuous
scan, the receiver sees packet boundaries that are random
with respect to the time interval during which the detector
is illuminated. Every location needs at least two full packet
intervals to ensure that it can always receive at least one
complete packet (Eqn. 10). Therefore, the number of bits
that are sent per position is greater than in System 1. We
plot
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Fig. 5. Performance of 2 packetized addressing systems for beam searching
versus Φ2

T /N0 using OOK, compared to LFSR addressing.

Tscan = 2

(
2

(
log2

AC

AR
+Nh

))
AC

AR

A2
B

A2
D

κΓN0

η2RΦ
2
T

. (10)

Fig. 5 shows that smaller beam size has more impact
because of the differences in the bit rate between the two
approaches. Hence, System 2 is faster than System 1. There
are also variants of System 1 and System 2 that improve
search time significantly. The idea lies in the ability of the
system to zoom. In fact, if only a single counter station
is known to be present, further optimization of System 1
and 2 can be done by gradually zooming in on the target.
For instance, in a two-step approach, the first step can be
rough, i.e., a wide beam search to locate the approximate
position, while the second step localizes the detector with
high precision. Such a zooming system is beyond the scope
of this paper but will be described in our later work.

V. ADDRESS CODING BY LFSR

Systems 1 and 2 use discrete addresses, as in Fig. 4, which
need a sync header and some cyclic redundancy checks
(CRC) or other error correction code which would further
increase search time.

As an alternative System 3, we propose a coding scheme to
embed direction addresses that is more efficient than creating
data packets. The idea is to emit a pseudo-random sequence
and to omit headers and sync words.

Linear-feedback shift registers (LFSRs) are characterized
by the feature that by knowing a small portion of the
sequence, namely the number of bits that equals the length
L of the LFSR, uniquely identifies the position as it shown
in Fig. 6. For this case, an LFSR of length L has a period of
2L − 1, thus it can address a little less than 2L positions in
L bits [6]. Any L bits in the sequence, e.g. bits at positions
l, l + 1, ..., l + L − 1, form one address and when shifting
over one position to l+ 1, l+ 2, ..., l+L, these L bits form
the next address, while as many as L − 1 bits overlap with
the previous address. Thus, instead of having to transmit

log2(AC/AR)+Nh extra bits for one more address, LFSR–
coded addresses only need a single bit extra for every next
address. Fig. 7 shows that for such encoding scheme, the
size of the beam should be L2 bigger than the size of the
detector. Then beam can move forward after sending 1 bit.
The other way is that the beam can move forward to the next
position after sending L bits. Thus, in (10) instead of the full
address, we only need to send L bits as we can retrieve its
position in the sequence.

Fig. 6. Addressing by taking a snippet from an LFSR sequence, as
considered in System 3. Red: minimum required number of bits for unique
ID. (6 in this example) Green: example of a fault tolerant capture of an
address

Evidently, the transmitter and the receiver must share the
knowledge of the LFSR polynomial. Error correction comes
for free: if more than L bits are received, it is possible to use
the excess bits for error correction because these extra bits
have to adhere to the feedback polynomial of the LFSR. This
system can use a continuous scanning swipe. Fig. 7 further
explains the area in which a unique address is found, while
a beam is being swiped at high speed across the coverage
area. System 3 uses this option and is seen to scan much
faster than previously considered systems.

Fig. 7. Swiping beam progressing along the X-axis (position). The circles
indicate the beam area at the start of the corresponding symbol. Address
symbols are indicated in the center of each circle. A detector positioned
in the light-blue area receives the red colored symbols 0101. Both 010 and
101 are unique addresses in the long LFSR sequence. A detector in the dark
blue area receives 010, which still gives a unique position in the sequence.

Fig. 8 shows that it is possible to scan two orders of
magnitude faster by using an LFSR code than with the use
of discrete addresses. Of course this gain highly depends on
the number of bits per discrete address and on the effec-
tiveness of the header, and on how the resolution is handled
in two dimensions. Nonetheless, it is anyhow significantly
faster than System 2. This is particularly attractive if high
bandwidths can be supported by the detector circuit. The
LFSR addressing is also particularly effective if the desired
resolution is smaller than the beam width.

As we rely on the binary properties of LFSRs, as we need
synchronisation from the data itself, and as we want to avoid
the need to track signal level variations, we use Manchester
encoded data that has a rate 1/2.

VI. FURTHER SYSTEM CONSIDERATIONS

After the laser beam from the transmitter hits the receiver,
it reports the signal back by means of a lower–rate feedback
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Fig. 8. Scan time for systems with a narrow beam as a function of Φ2
T /N0.

Comparison of using a LFSR code for scan searching compared to using
discrete addresses in data packets.

channel. As there is no prior information on the position
of either transmitter or the receiver, it is preferable to use
a wide beam for the feedback channel to cover all possible
positions of the transmitter. Therefore, we can use both LEDs
or lasers for this as it is not required to have a high bit rate
to transmit an address back. The lack of information on the
location of the transmitter means that a wide beam can come
from any angle. Thus the detector on the transmitter side also
needs to have a wide field of view (FoV). In photodetector
designs, there are two trade-off that plays an important role
in the design of the optical receiver: area versus bandwidth
and gain versus FoV [7]. There are a couple of proposals
in the literature to increase the FoV of the detector. In
[8] it was proposed to use a two-dimensional matrix of
photodetectors to increase the FoV without compensating
for the bandwidth as there is an area-bandwidth trade-off.
Such system proved to be capable of supporting > 1 Gb/s
transmission, however, the penalty in signal strength was
not reported. In [9] authors have proposed a design of a
high-speed angle diversity receiver (ADR) that tackles the
optimization of configuration of the receiver bandwidth and
FoV. The noise versus signal-gain is evaluated in [10]. It
appeared that matrix circuit layout may be advantageous for
bandwidth but at the cost of sensitivity. Moreover, the size
of the detector may be optimized, as in [11].

VII. CONCLUSIONS

In optical wireless communication, widening the search
beam does not necessarily accelerate the scan time as it
disproportionately reduces the energy per bit. The electrical
energy per bit is proportional to the symbol duration and to
the square of the optical power that falls on the detector.
Thus, increasing beam size reduces the received signal
strength to a much larger extent than radio communication.
We learn from the law of conservation of energy that in free
space the received optical or electromagnetic power reduces
proportionally with the beam area.

We investigate this by considering systems that are also
limited by Additive White Gaussian Noise in the receiver.
In fact, in optical systems with a photodiode, the received
signal strength declines proportionally to the square of the
beam area. This paper studied the impact on the search time.

We developed a novel and efficient method for encoding
the angular direction of the steering device to ensure a
fast and error-free search for establishing a connection for
laser-based optical wireless communication systems. For our
example, the use of an LFSR speeds up scan time up by an
order of magnitude compared to methods that require sending
discrete addresses. As the receiver knows the polynomial of
the LFSR sequence, additionally received bits outside the
main address data can be used for error correction which
saves even more time compared to approaches using packet-
based addressing.
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Abstract—On the one hand, the AMR (Automatic Modulation
Recognition) realm has recently shown an increase of interest,
particularly as an application for monitoring the physical layer
of wireless transmissions. It consists in determining the employed
modulation type of a sensed Radio Frequency (RF) signal at a
given time, space and frequency. Moreover, it is a key component
of intelligent radio systems such as Cognitive Radios (CR) that
are key devices for Massive IoT (MIoT), autonomous cars, drones,
5G, 6G, etc. On the other hand, Bivariate Empirical Mode
Decomposition (BEMD) is a signal decomposition method that
can distill signals into a finite number of Intrinsic Mode Functions
(IMFs) through a process known as sifting. BEMD is specifically
designed to decompose bivariate (e.g. complex) signals, such as
complex IQ samples of telecommunication data time series. The
IMFs in conjunction with an AI architecture permits modulation
classification.
This paper specifically focuses on the influence of BEMD param-
eters on component extraction, namely the number of applied
sifts and projections. The impact of linear interpolation method
vs cubic spline interpolation method is also presented.

Index Terms—automatic modulation recognition, AMR, auto-
matic modulation classification, AMC, cognitive radio, bivariate
empirical mode decomposition, parameters BEMD, decomposi-
tion, convolutional neural networks, CNN

I. INTRODUCTION

A. Context

The classification of modulation schemes traditionally in-
volves two main approaches: the decision theoretic approach
and the feature-based approach. However, with the advent of
deep learning architectures [1], the domain of automatic mod-
ulation classification (AMC) has experienced a renaissance.

In [2], it has been proven that decomposing the signal
using BEMD prior to introducing it into a convolutional
neural network (CNN) type of AI architecture helps to extract
interesting features and increases classification accuracy. In

this paper, the impact of the BEMD decomposition parameters
are analysed, namely the number of siftings, the number of
projections and the type of interpolation used.

B. Data set

In order to classify modulations, an IQ database is re-
quired. The adopted dataset in this work is O’Shea’s [3]
RadioML2016a dataset. This dataset is a publicly available
dataset consisting of complex-valued IQ samples, each being
128 samples long, and covering a wide range of radio signal
modulations. The RadioML2016a dataset has been widely
used in research on automatic modulation classification and
machine learning for signal processing which enables thus per-
formance comparison [4] [5]. It provides a valuable resource
for researchers and developers working on the development
of new algorithms for the classification of radio signals. The
database contains single carrier modulations such as GFSK
(Gaussian Frequency Shift Keying), 64QAM (Quadrature Am-
plitude Modulation), WBFM (WideBand Frequency Modula-
tion) or QPSK (Quadrature Phase Shift Keying). There are a
total 11 modulation schemes in the dataset and the signal to
noise ratio in the dataset ranges from from -20dB to 18dB
by steps of 2 dB, thus offering 20 different SNR values. This
leads to a total of 220000 waveforms containing 128 samples
each. Half of the dataset has been used for training, the other
half for evaluation. It has to be noted that the dataset is not
perfect [6] but that despite its flaws, it continues to be heavily
used.

II. DECOMPOSITION METHOD

A. BEMD (Rilling [7])

Bivariate empirical mode decomposition (BEMD) is a
widely used method that extends the univariate EMD method
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to bivariate data, which is common in many contemporary
data sets, including complex data. With the aim of extracting
finer information to recover the modulation, such as amplitude
and angular frequency, researchers have focused on developing
approaches for decomposing bivariate or even multivariate
data. In the context of telecommunications and software-
defined radio, the main data series of interest are complex
IQ samples, which makes BEMD a suitable approach.

The decomposition mechanism [8], also called sifting, con-
sists in decomposing the input signal s(t) into a finite number
N of IMFs (Intrinsic Mode Functions) such that the signal
can be expressed as:

s(t) =
N∑

i=1

IMFi(t) + r(t)

where r(t) is the residue which may or may not have a linear
trend.
Two important facts need to be highlighted in the BEMD
method. Firstly, as presented in Fig. 1 displaying the
decomposition steps, the mean is recurrently subtracted
from the signal. Each of these subtractions are called sifts
or siftings. The number of siftings can either be defined
using a stopping criterion which is time expensive or simply
predefined. Secondly, the method works by extracting rotating
components using the mean of the envelope, which is like
an enclosing tube around the signal. To create the lines that
materialize the envelope, the signal is projected onto different
directions or planes, resulting in a 2D signal on which the
standard EMD methodology is applied. Four projections, for
instance, could include extreme points in the top, bottom,
left, and right directions. The rotating components can then
be used to extract finer information, such as amplitude and
angular frequency.

Algorithm 1 is the pseudocode representing one sifting
process in the BEMD method.

Fig. 1: Decomposition flow graph

Algorithm 1 The used BEMD algorithm from [7]

for 1 ≤ k ≤ N do
Project the complex valued signal x(t)

on direction φk (Plane P)
→ pφk

(t) = Re(e−iφkx(t))
Extract the locations

[
tkj
]
of the

maxima of pφk
(t)

Interpolate the set (tkj , x(t
k
j )) to obtain

the envelope curve in direction
φk : eφk

(t)
end for
Compute the mean of all envelope curves
m(t) = 1

N

∑
k eφk

(t)
Subtract the mean

B. Linear interpolation

In order to improve the overall computational speed, specif-
ically regarding the envelope calculation, modifications have
been made to the interpolation method. The interpolation step
was found to be the most computationally intensive part of
Algorithm 1 based on the results obtained from CPU profilers.
Therefore, the cubic spline interpolation, which was previously
used, has been replaced by a linear interpolation technique.
Linear interpolation is a simple yet effective method for
interpolation.

Fig. 2 shows how the signal’s projections are used to
recreate the envelope. The signal is depicted in blue and
is a complex sinusoid s(t) = sin(t) + jcos(t) The red
line represents the mean of the envelope, it is calculated
using the average of the projections. The other colors display
the maxima and minima points of the signal that has been
projected onto four planes at the angles 0, 45, 90 and 135
degrees.

Fig. 2: Projection example for a complex sinusoid of amplitude
1V

Fig. 3, displays the real part of the first four intrinsic mode
functions (IMFs) extracted from a Quadrature Phase-Shift
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Keying (QPSK) modulation. These IMFs have been obtained
through the BEMD method, utilizing four projections and
three sifts. The difference between the plotted curves lies in
the applied interpolation. Specifically, the blue curves were
generated using cubic spline interpolation, whereas the orange
curves were produced using linear interpolation. One can see
that when using the cubic splines method, the number of
remaining oscillations decreases faster with increasing IMF
order.

III. METHODOLOGY

A. Artificial Intelligence architecture

Automated modulation classification (AMC) is the task of
identifying the modulation type of a received signal at the
receiver, which is typically a complex and challenging multi-
class classification problem. To tackle this problem, deep-
learning models are often employed. But designing such mod-
els involves consideration of various architectural parameters.

In this work, Convolutional Neural Networks (CNNs) were
utilized for AMC. CNNs are a type of feed-forward neural
network that has shown great success in processing and
analyzing image and signal data. The main components of
CNNs are its convolutional layers, which are responsible for
convolving feature maps from previous layers with trainable
kernels or filters. Additionally, the architecture includes fully
connected or dense layers, which are Multilayer Perceptrons
(MLPs) connected to the previous layer.

To improve the performance of the model, various tech-
niques were used in this work, including ReLU activation
maps (Rectified Linear Unit), padding and dropout layers. A
flatten layer is used between the CNN and the dense layers.
However, no pooling was employed, as the height of the data
is small, and pooling could result in information loss due to
averaging.

The corresponding convolutional layers (named conv1 and
conv2) for this model have filter sizes of 1x3 for conv1 and 2x3
for conv2. The final dense layer has a size of 11, corresponding
to the number of possible modulations, and includes a softmax
activation layer for classification. The used CNN configuration
is depicted in Fig. 5. The CNN architecture image have been
created using PlotNeuralNet [9]. In Fig. 4 the best working
input shape extracted from [2] is showed. The input shape
has a height of two, containing the real (I) and the imaginary
(Q) parts. The length is the number of samples (128) and the
channels or depth is created with the extracted IMFs.

B. Information flow

The methodology’s overall structure is illustrated in Fig. 6.
The incoming Complex IQ data received by the receiver is
subjected to a decomposition process using the Bidimensional
Empirical Mode Decomposition (BEMD) method, with vari-
ous parameters as mentioned in the beginning of the text. The
extracted IMFs are then introduced to the CNN architecture
which is trained to classify the used modulation type.

IV. RESULTS

A. Parameters

The investigated parameters are the number of siftings for
IMF extraction, the number of projections as well as the
type of applied interpolation. The main characteristics are the
overall accuracy taking into account all modulations and for all
signal to noise ratios. The needed decomposition time is also
added. Table I shows the time needed for the decomposition
and is given for 100000 time series of length 128 and in
minutes unit. It has been extracted from the mean of two
measurements.
Table I also shows the accuracy results extracted from the
mean of three full trainings. The accuracy results need to
be compared to the overall accuracy using the signals IQ
values along, thus involving no decomposition. In this original
case, the accuracy is of 51.8 %. The calculations have been
performed on an Intel SkyLake 2.60 GHz CPU on a high
performance computing (HPC) cluster.

TABLE I: Overall accuracy depending on decomposition
parameters

interpolation siftings projections accuracy % approx time (min)

cubic

3
4 53,86 84
16 54,05 310
64 53,67 1012

10
4 53,96 269
16 53,94 907
64 53,76 3917

linear

3
4 51,92 39
16 52,93 138
64 53,71 676

10
4 50,73 134
16 50,61 530
64 50,86 2302

B. Discussion

The assumption made to begin this work was that increasing
the number of siftings and projections would give more refined
intrinsic mode functions, increasing therefore the quality of
the AI architectures input, and thus the classification accuracy.

This work shows that this is not the case and that these
parameters have very little effects on the overall accuracy of
the classifier.
This might be an unfavorable result in the sense that we can
not improve the results considerably by refining the decom-
position. However, it also means that it is not necessary to
use high numbers of projections and siftings that increase the
decomposition times drastically in order to get good results.

Regarding the complexity of the BEMD decomposition, it
has been analysed in [10], [11] and [2]. Those references
indicate that complexity can be simplified into into

P S n log2 n = O(n log n)

in which P represents the number of projections, S the number
of siftings and n the length of the data.

Table I confirms this trend as the decomposition times are
proportional to the number of applied projections and siftings.
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Fig. 3: Real part of the first four IMFs extracted from a QPSK modulation. In blue using a cubic spline and in orange using
linear interpolation

Fig. 4: 3D data shape, IMFs are stored in channels

Fig. 5: CNN architecture applied in the case of a 3D data
shape input

Also, for the same parameters, using a linear interpolation

Fig. 6: Information flow

divides by two the required computation time.
Despite its potential benefits, linear interpolation does not

result in a noticeable improvement in processing time com-
pared to cubic spline interpolation, for a given threshold of
classification accuracy. In practice, to achieve the same level
of accuracy as cubic spline interpolation, it is necessary to
increase the number of projections when using linear interpola-
tion, which ultimately eliminates any potential time advantage.

Moreover, it has been found out that using linear interpola-
tion increases the number of extracted IMFs.

V. CONCLUSION

Our results, as shown in Table 1, indicate that increasing the
number of sifts and projections does not significantly affect
the output accuracy of the classifier. This is an encouraging
conclusion as it suggests that additional computation time is
not needed to improve classification accuracy.

Upon analyzing the trade-off between decomposition time
and classification accuracy, it is not recommended to utilize
linear interpolation for envelope estimation in this specific

21



use case. The reason for this is that linear interpolation does
not provide sufficient accuracy compared to other methods
of interpolation. Therefore, the accuracy of the classification
results may be compromised if linear interpolation is employed
for envelope estimation.
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Abstract—Radio frequency (RF) harvesting is showed to be
a feasible technique to power energy neutral devices, providing
a flexible solution to exchange small amounts of energy. The
rectifier, used to convert RF to direct current (DC), introduces
non-linearities, degrading the efficiency of the RF harvester.
Different techniques are studied in literature to address this
challenge, e.g., by using high peak-to-average power ratio (PAPR)
signals. This research presents several PySpice rectifier models
to evaluate the efficiency of different signal waveforms and RF
harvester architectures. In this work, these models are utilized
to assess the energy-efficiency gain of high PAPR signals with
respect to single tone signals. As resulted from this work, we
concluded that the gains of high PAPR signals depend strongly
on the rectifier circuit, even having an adverse effect in case of
a voltage doubler.

Originally, a lot of attention has been spent on the im-
provement of the power conversion efficiency of rectifier
circuits in order to increase the overall harvesting efficiency.
However, recently, it has been shown that waveform design
also affects the energy harvester efficiency [1]–[3]. The RF-to-
DC efficiency of the harvester can be improved by waveform
types with high peak-to-average power ratio (PAPR) signals.
As the term explains, the signal power level will fluctuate
and peaks of higher radiated power will occur periodically.
At non-peak times, the transmitted power is significantly
lower than the average radiated power. The reason why this
method is being studied, is due to the restrictions in radiated
power. Searching for techniques where the average radiated
power of the transmitted signals remains the same, yet causes
higher efficiency gains in the harvester, is therefore worth
considering. In this study, the harvester performance supplied
with a single tone signal is compared with multi-sine signals.
To make a fair comparison, the generated waveforms should
have the same average power than a single tone signal. While
many research papers have shown that the RF-to-DC efficiency
can be increased by applying high PAPR signals, it turns out
that these signals are not always beneficial for the harvester
performance. [4] has described this phenomenon more in detail
specifically for a voltage doubler rectifier.

In this comparative study, the full harvester efficiency is
considered, including matching losses and consequently reflec-
tions. Due to the nonlinear model of a diode, it is challenging
to match a rectifier circuit. Usually, the input impedance is
determined by simulations or measured with a vector net-
work analyzer (VNA). Based on the obtained complex input
impedance and using the Smith chart, an appropriate matching

network is proposed. The nonlinear model of the diode causes
an additional input power dependency, in addition to the
frequency dependency. This additional dependency means that
the matching circuit cannot ensure a perfect match over the
entire input power range. A matching circuit between the
antenna impedance of typically 50Ω and the rectifier circuit
is proposed for each considered harvester. Unfortunately, this
matching circuit provides only one optimal situation with
small losses and reflections for a well-defined frequency and
input power level. In practise, reflections will cause additional
losses due to a fluctuating input power. This study considers
two rectifier circuits constructed with a single diode rectifier
and a voltage doubler rectifier.

The results show that for a single diode rectifier, the power
conversion efficiency increases with an increasing number of
frequency components. However, with a voltage doubler, the
opposite effect is stated. It appears that the voltage doubler
performance decreases with increasing frequency components
in the multi-sine signal. This latter rectifier circuit no longer
works as a true doubler. Furthermore, the simulations show
that efficiency gains can be validated with low complex
PySpice scripts. Implementation and design effort can be
improved by first modelling and simulating the desired rectifier
circuit with corresponding matching circuits, and then supply
them with the desired waveform input signals. Sweeps over the
entire input power range (e.g. −20 dBm up to 10 dBm) for
multiple input signals provides a good estimate of the potential
efficiency gains.
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Abstract—Recent advances in DNA data storage and racetrack
memory have attracted renewed attention towards deletion,
insertion and substitution correcting codes. Compared to codes
aimed at correcting either substitution errors or deletion and
insertion (indel) errors, the understanding of codes that correct
combinations of substitution and indel errors lags behind. In this
paper, we focus on the maximal size of q-ary t-indel s-substitution
correcting codes. In particular, our main contribution is a
Gilbert-Varshamov inspired lower bound on this size. Moreover,
we study the asymptotic behaviour of this bound.

Index Terms—Error correcting codes, Gilbert-Varshamov
bound, indels, substitutions.

I. INTRODUCTION

CODING techniques for correcting deletion, insertion and
substitution errors have attracted increasing attention

recently due to their applications in DNA data storage [1],
[2] and racetrack memory [3], [4]. Codes that correct either
substitution errors or deletion and insertion errors have been
extensively studied in literature. In contrast, the simultaneous
correction of combinations of these three error types is less
understood. A central problem is to determine the maximal
size of codes that correct combinations of deletion, insertion,
and substitution errors.

Classical error correcting codes aimed at correcting sub-
stitution errors have been well-studied for over 75 years [5].
A fundamental result in this area is the well-known Gilbert-
Varshamov bound [6], [7] which asserts the existence of a
q-ary s-substitution correcting code with codewords of length
n and with a code size of at least

qn∑2s
i=0

(
n
i

)
(q − 1)i

.

This statement was initially proven by Gilbert [6] for binary
codes, and later independently by Varshamov [7]. Subse-
quently, the bound has been improved and generalized in
various settings. An overview of these improvements in the
context of substitution correcting codes is given in [8].

In a seminal paper [9], Levenshtein initiated the study of
deletion and insertion (indel) correcting codes. He showed that
a code that is able to correct t deletions (or insertions) is able to
correct any t′ deletions and t′′ insertions, whenever t′+t′′ ≤ t.

In other words, a t-deletion (insertion) correcting code is also a
t-indel correcting code. This property shows the indifference
between correcting deletions and insertions, which warrants
the terminology of t-indel correcting codes. Inspired by the
Gilbert-Varshamov bound and the work of Tolhuizen [10], a
lower bound on the maximal size of t-indel correcting codes
was given in [11]. Multiple bounds that improve upon this
result were presented in [12] and [13].

In comparison with either substitution correcting codes or
indel correcting codes, non-asymptotic lower bounds on the
maximal cardinality of t-indel s-substitution correcting codes
have been studied to a lesser degree in literature. Several t-
indel s-substitution correcting codes have been constructed,
e.g. in [14], [15], which naturally imply non-asymptotic lower
bounds on the maximal size of these codes. In [9], Levenshtein
also showed two asymptotic bounds which imply that a
binary t-indel s-substitution correcting code of maximal size
has an asymptotic redundancy between (t + s) log2(n) and
2(t+s) log2(n)+o(log2(n)). Moreover, note that each (t+2s)-
indel correcting codes is also a t-indel s-substitution correcting
code, because a substitution can be seen as a deletion followed
by an insertion. Hence, lower bounds on the maximum size of
(t+2s)-indel correcting codes imply lower bounds for t-indel
s-substitution correcting codes as well.

The last observation that a (t + 2s)-indel correcting code
is also a t-indel s-substitution correcting code might raise
the preliminary question whether it is superfluous to consider
the correction of substitutions separately. However, there are
two arguments in favor of separating indel correction from
substitution correcting. First, it was recognized by Song et al.
[14] that (t + 2s)-indel correcting codes are not necessarily
optimal within the set of t-indel s-substitution correcting
codes in terms of redundancy1. Secondly, in applications
such as DNA data storage, the error rates of indels and
substitutions differ [2]. Therefore, it is sensible to bound the
number indels and substitutions by different parameters.

1For instance, the single-substitution correcting binary Hamming code with
words of length 7 has size 16 [16]. In contrast, in [17, Thrm. 1] it was shown
that a binary two-indel correcting code has a maximal size of at most 11.
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In this paper, we study the maximal size of t-indel s-
substitution correcting codes on a q-ary alphabet. In partic-
ular, our contribution is a Gilbert-Varshamov inspired lower
bound on this size. Moreover, we will prove that this bound
implies that a q-ary t-indel s-substitution correcting code
of maximal size has an asymptotic redundancy of at most
2(t+s) logq(n)+o(log(n)). This extends Levenshtein’s upper
bound on the asymptotic redundancy to q-ary codes.

The organisation of this paper is as follows. In Section II,
notation, terminology and several prior results are discussed.
Next, a non-asymptotic lower bound inspired by the Gilbert-
Varshamov bound is derived in Section III. Lastly, the asymp-
totic behaviour of this bound is studied in Section IV.

II. DEFINITIONS AND PRELIMINARIES

For a finite set S, denote the cardinality of S by |S|. Consider
the alphabet with q ≥ 2 symbols given by Bq := {0, 1, ..., q−
1}. The set of q-ary words (i.e., vectors) of length n with
symbols from Bq is denoted by Bq(n) := {0, 1, ..., q − 1}n.
A non-empty subset C ⊆ Bq(n) is called a code and the
elements of a code are called codewords. A code can be
capable of correcting errors by ensuring that the codewords
of C are ‘sufficiently different’, so that after several errors
have occurred the resulting word still ‘resembles’ the original
codeword, but not any of the other codewords. This idea
forms the basis for the following definition of an indel and
substitution correcting code.

For integers 0 ≤ t ≤ n and 0 ≤ s ≤ n, a code C ⊆
Bq(n) is said to be a t-indel s-substitution correcting code if
any q-ary word (not necessarily of length n) can be obtained
from no more than one codeword by exactly t′ deletions, t′′

insertions and s or fewer substitutions, whenever t′ + t′′ ≤ t.
A 0-indel s-substitution correcting code is simply called an
s-substitution correcting code and analogously a t-indel 0-
substitution correcting code is called a t-indel correcting code.

By only using codewords for communicating information,
the code gains error-correcting capabilities at the cost of
introducing redundancy. In order to maximize the amount
of information that can be transmitted using a code, we are
interested in the maximal size of a q-ary t-indel s-substitution
correcting code with codewords of length n, which we denote
by Mq(n, t, s). The (information) rate of a code C is defined
by 1

n logq(|C|) and the redundancy by n− log(|C|).
Denote by Vt′,t′′,s(x) the set of words that can be reached

from x ∈ Bq(n) by means of exactly t′ deletions, t′′ insertions
and at most s substitutions. Clearly, the q-ary words in the
set Vt′,t′′,s(x) have length n − t′ + t′′. Moreover, we define
Dt(x) = Vt,0,0(x), It(x) = V0,t,0(x) and Ss(x) = V0,0,s(x).
These sets are highly related to t-indel s-substitution correct-
ing codes, and allow for equivalent characterizations of these
codes in terms of the set Vt′,t′′,s(x). The following lemma
collects various equivalent characterizations from e.g., [14,
Sec. II], [18, Lem. 2] and [19, Lem. 2].

Lemma 1. Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be
integers, and let C ⊆ Bq(n) be a code. Then, the following
five statements are equivalent:

1) C is a t-indel s-substitution correcting code.
2) Vt′,t′′,s(c1)∩Vt′,t′′,s(c2) = ∅ for all distinct codewords

c1, c2 ∈ C, and for all integers t′, t′′ ≥ 0 such that
t′ + t′′ ≤ t.

3) Vt,0,s(c1) ∩ Vt,0,s(c2) = ∅ for all distinct codewords
c1, c2 ∈ C.

4) V0,t,s(c1) ∩ V0,t,s(c2) = ∅ for all distinct codewords
c1, c2 ∈ C.

5) c2 /∈ Vt,t,2s(c1) for all distinct c1, c2 ∈ C.

For general parameters t′, t′′ and s, and words x ∈ Bq(n)
determining the cardinality of Vt′,t′′,s(x) is a non-trivial task
[20]. In the highly specific case that t′ = t′′ = 0 it holds for
each x ∈ Bq(n) [5] that

|Ss(x)| =
s∑

i=0

(
n

i

)
(q − 1)i. (1)

The quantity Ss
n,q :=

∑s
i=0

(
n
i

)
(q − 1)i will be referred to as

the size of the q-ary Hamming sphere of radius s. Moreover,
it has been established [21] that

|It(x)| = St
n+t,q =

t∑

i=0

(
n+ t

i

)
(q − 1)i. (2)

Interestingly, the cardinalities of Ss(x) and It(x) depend on x
only via the parameters n and q. In contrast, |Dt(x)| depends
on the structure of the word x as well as the parameters n and
q. To the best of authors’ knowledge, an analytic formula of
|Dt(x)| is not known for general t and therefore we must
rely on bounds (see e.g., [9], [22], [23]). For t ≤ 5, an
analytic formula of |Dt(x)| has been provided in [24], but
these expressions are rather involved for t ≥ 2. Lastly, we
mention that using the observation that x ∈ It(y) if and only
if y ∈ Dt(x), it was shown in [11] that the average cardinality
of Dt(x) is given by

1

qn

∑

x∈Bq(n)

|Dt(x)| =
1

qn

∑

y∈Bq(n−t)

|It(y)|

(2)
=

1

qt

t∑

i=0

(
n

i

)
(q − 1)i. (3)

III. GILBERT-VARSHAMOV INSPIRED LOWER BOUND

The well-known Gilbert-Varshamov lower bound for s-
substitution correcting codes [6], [7] is given by

Mq(n, 0, s) ≥
qn∑2s

i=0

(
n
i

)
(q − 1)i

. (4)

This bound is commonly proven using a sphere-covering
argument where the spheres are given by S2s(c) centered
around the codewords c ∈ C (see e.g., [5, Thrm. 4.3]). In
the case of substitutions, this proof is facilitated by the fact
that these spheres are of equal size.

Tolhuizen [10] recognized that the Gilbert-Varshamov
bound is also implied by Turán’s theorem [25] from extremal
graph theory. A particular consequence of the latter approach
is that it easily generalizes to the case in which the spheres
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are not of equal size. For instance, this is the case for t-indel
correcting codes when dealing with the spheres Vt,t,0(c). The
approach from Tolhuizen was used by Levenshtein [11] to
bound the maximal size of a t-indel correcting code from
below. In particular, it was shown that

Mq(n, t, 0) ≥
qn+t

(∑t
i=0

(
n
i

)
(q − 1)i

)2 . (5)

For completeness, we mention that other Gilbert-Varshamov
related lower bounds on Mq(n, t, 0) are given in [12], [13].

Next, it is a natural step to generalize the argument from
Tolhuizen to t-indel s-substitution correcting codes.

Lemma 2. Let n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and 0 ≤ s ≤ n be
integers. The following gives a lower bound on Mq(n, t, s),

Mq(n, t, s) ≥
qn

Vavr
t,t,2s

, (6)

where Vavr
t,t,2s := q−n

∑
x∈Bq(n)

|Vt,t,2s(x)|.
Proof. The idea of this proof is to translate the problem of
finding a large code to the problem of finding a large clique2.
This allows us to apply the argument from [10, Sec. II] to
derive the desired lower bound on Mq(n, t, s).

Define the undirected graph G = (V,E) without loops or
double edges as follows. Let V = Bq(n) be the set of nodes of
G. Two distinct nodes x and y from V are joined by an edge
in E if x /∈ Vt,t,2s(y). This is well-defined because it holds
that x /∈ Vt,t,2s(y) if and only if y /∈ Vt,t,2s(x). Intuitively,
the pairs of nodes that are connected by an edge can both
be codewords in a t-indel s-substitution correcting code. The
number of nodes equals |V | = qn and the number of edges is
given by

|E| = 1

2

∑

x∈V

(|V \ Vt,t,2s(x)|)

=
1

2

∑

x∈V

(|V | − |Vt,t,2s(x)|)

=
1

2
q2n − 1

2

∑

x∈Bq(n)

|Vt,t,2s(x)|

=
1

2
qn(qn − Vavr

t,t,2s),

where the first equality follows from the fact that each x ∈
V has |V \ Vt,t,2s(x)| incident edges. Therefore, summing
|V \ Vt,t,2s(x)| over all nodes in x ∈ V equals 2|E| since
each edge is counted twice. Observe that from the definition
of the edges in G and Lemma 1 it follows that a clique of
size k in G corresponds to a t-indel s-substitution correcting
code C of size k.

Using the cardinalities of V and E it follows from the
argument in [10, Sec. II] that there exists a clique in G of size
⌈ qn

Vavr
t,t,2s

⌉. For brevity, we do not repeat this argument here.

2A clique of a graph G is an induced subgraph that is complete, i.e., all
pairs of vertices are connected by an edge.

In turn, this implies that there exists an equally large t-indel
s-substitution correcting code, which concludes the proof.

In order to evaluate the lower bound in Lemma 2 the size of
Vt,t,2s(x) averaged over all x ∈ Bq(n) needs to be determined.
To the best of the authors’ knowledge, an analytic formula
for |Vt,t,2s(x)| or Vavr

t,t,2s is not known for general parameters
n, q, t and s. For this reason, we employ an upper bound on
Vavr
t,t,2s to obtain an explicit result.

Theorem 3. For integers n ≥ 1, q ≥ 2, 0 ≤ t ≤ n and
0 ≤ s ≤ n, the following gives a lower bound on Mq(n, t, s),

Mq(n, t, s) ≥
qn+t

(
t∑

i=0

(
n
i

)
(q − 1)i

)2 2s∑
i=0

(
n−t
i

)
(q − 1)i

. (7)

Proof. We claim that Vavg
t,t,2s can be upper bounded by

1

qt

(
t∑

i=0

(
n

i

)
(q − 1)i

)2 2s∑

i=0

(
n− t

i

)
(q − 1)i. (8)

In this case, the result of the theorem follows immediately
from applying the upper bound to Lemma 2. Therefore, this
proof is limited to proving this claim. In what follows, a
superscript − will be used to denote a word in Bq(n − t),
whereas an omission thereof is meant for words in Bq(n).

To this end, observe that each element in Vt,t,2s(x) can
be reached from x ∈ Bq(n) by first deleting precisely t
symbols, followed by substituting at most 2s symbols and
lastly inserting exactly t symbols. Hence, it follows that

|Vt,t,2s(x)| ≤
∑

y−∈Dt(x)

∑

z−∈S2s(y−)

|It(z−)|. (9)

In order to evaluate the right-hand side of this expression,
recall from (1) and (2) that the cardinalities of the sets It(x−)
and S2s(x

−) do not depend on the choice of x− ∈ Bq(n− t).
Moreover, the cardinality of Dt(x) averaged over all x ∈
Bq(n) was given in (3). By combining these results and
carefully taking into account the lengths of the words, it
follows that

Vavg
t,t,2s = q−n

∑

x∈Bq(n)

|Vt,t,2s(x)|

(9)
≤ 1

qn

∑

x∈Bq(n)

∑

y−∈Dt(x)

∑

z−∈S2s(y−)

|It(z−)|

(2)
=

1

qn

∑

x∈Bq(n)

∑

y−∈Dt(x)

∑

z−∈S2s(y−)

St
n,q

(1)
=

1

qn

∑

x∈Bq(n)

∑

y−∈Dt(x)

S2s
n−t,q · St

n,q

=
1

qn
· St

n,q · S2s
n−t,q ·

∑

x∈Bq(n)

|Dt(x)|

(3)
=

1

qt
· (St

n,q)
2 · S2s

n−t,q.
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Note that the last expression is equivalent to (8), which proves
the claim.

Observe that the lower bounds (4) and (5) are special cases of
the latter theorem, since they are recovered by setting t = 0
and s = 0, respectively. Obviously, the bound from Theorem
3 can be improved with the availability of exact expressions,
or tighter bounds on Vavg

t,t,2s.

IV. ASYMPTOTIC BEHAVIOUR

In this section we discuss the asymptotic behaviour of The-
orem 3 in two settings based on the dependency of t and s
with respect to n.

First, consider the setting in which the parameters q, t and
s are fixed, and we let n tend to infinity. In this setting,
Levenshtein [9] showed two asymptotic bounds on M2(n, t, s)
which imply that the asymptotic redundancy of a binary t-indel
s-substitution correcting code of maximal size lies between
(t+ s) log2(n) and (2t+ 2s) log2(n) + o(log2(n)). Here, we
provide an alternative proof for the asymptotic upper bound
and extend the result from binary to q-ary codes, by showing
that it is implied by the non-asymptotic lower bound on
Mq(n, t, s) of Theorem 3.

Lemma 4. Let q ≥ 2 be an integer. For non-negative integers
s and t such that s+ t ≥ 1, the following holds

lim sup
n→∞

n− logq(Mq(n, t, s))

(2t+ 2s) logq(n)
≤ 1.

Proof. Theorem 3 states that

Mq(n, t, s) ≥
qn+t

(St
n,q)

2 · S2s
n−t,q

.

This implies that the redundancy of an optimal t-indel s-
substitution correcting code is bounded by

n− logq(Mq(n, t, s)) ≤ −t+ 2 logq(S
t
n,q) + logq(S

2s
n−t,q).

Note that for a fixed integer k ≥ 1 it holds that
(
n
k

)
=

1
k!n

k+o(nk). In turn, it follows that Ss
n,q = (q−1)s

s! ns+o(ns),
and logq(S

s
n,q) = s logq(n)+o(logq(n)). By combining these

observations we obtain

lim sup
n→∞

n− logq(Mq(n, t, s))

(2t+ 2s) logq(n)
≤

lim sup
n→∞

−t+ 2 logq(S
t
n,q) + logq(S

2s
n−t,q)

(2t+ 2s) logq(n)
= 1,

as desired.

The following statement is immediate from the previous
lemma.

Corollary 5. A maximal size t-indel s-substitution correct-
ing code has an asymptotic redundancy of at most (2t +
2s) logq(n) + o(logq(n)).

Secondly, we consider the asymptotic regime in which q ≥ 2
and τ, σ ∈ [0, 1] are fixed and n tends to infinity. We set3

t = τn, s = σn. Define the asymptotic rate by

Rq(τ, σ) := lim inf
n→∞

1

n
logq(Mq(n, τn, σn)). (10)

For σ = 0 and τ > 0, bounds on Mq(n, t, 0) have been used
to derive results on Rq(τ, 0) in e.g., [11], [17], [26]. On the
other hand, for τ = 0 and σ > 0 a summary of several results
on Rq(0, σ) can be found in [5]. Here, we use Theorem 3 to
derive a lower bound on Rq(τ, σ).

To this end, let Hq(x) = x logq(q − 1)− x logq(x)− (1−
x) logq(1 − x) on [0, 1 − 1

q ] with Hq(0) = 0 denote the q-
ary entropy function. The extended q-ary entropy function is
given by H∗

q (x) = Hq(min{x, 1 − 1
q}) on [0,∞). Recall

the following useful property of the extended q-ary entropy
function [17], for each λ ∈ (0, 1) it holds that

lim
n→∞

1

n
logq

(
λn∑

i=0

(
n

i

)
(q − 1)i

)
= H∗

q (λ). (11)

This property enables us to derive the following lower bound
on Rq(τ, σ).

Lemma 6. Let q ≥ 2 be an integer and τ, σ ∈ (0, 1). Then,
it holds that

Rq(τ, σ) ≥ 1 + τ − 2H∗
q (τ)− (1− τ)H∗

q (
2σ

1− τ
).

Proof. Theorem 3 states for n ≥ 1 that

Mq(n, τn, σn) ≥
qn+τn

(Sτn
n,q)

2 · S2σn
n−τn,q

.

By applying this bound to the rate function Rq(τ, σ), it readily
follows that

Rq(τ, σ) ≥ lim inf
n→∞

1

n
logq

(
qn+τn

(Sτn
n,q)

2 · S2σn
n−τn,q

)

=1 + τ − 2 lim inf
n→∞

1

n
logq(S

τn
n,q)

− lim inf
n→∞

1

n
logq(S

2σn
n−τn,q)

=1 + τ − 2H∗
q (τ)

− lim inf
n′→∞

1− τ

n′ logq(S
2σ

1−τ n′

n′,q ) (12)

=1 + τ − 2H∗
q (τ)

− (1− τ)H∗
q (

2σ

1− τ
),

where we applied the change of variables n′ = n−τn in (12),
and used (11) to evaluate the limit inferiori.

3In what follows, we will be slightly imprecise by setting t = τn, s = σn
which may not be integer-valued. However, in the asymptotic regime this does
not change the over-all results.
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V. CONCLUDING REMARKS

In this paper, we have presented a non-asymptotic lower
bound on the maximal cardinality of a t-indel s-substitution
correcting code. In order to improve this lower bound, an
interesting research challenge is to find an expression or tighter
upper bound for the size of the set Vt′,t′′,s(x).

More generally, it could also be investigated whether the
numerous existing lower and upper bounds on the maximum
cardinality of either t-indel correcting codes or s-substitution
correcting codes can be generalized to bounds on Mq(n, t, s).
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I. RESEARCH GOAL AND CONTEXT

One of the critical aspects of emerging networks is their
sustainability. In that context, the challenge of resource man-
agement schemes moves from the traditional maximisation of
the nodes’ performance, to the minimisation of the network
resources’ utilisation while fulfilling the devices’ Quality
of Service (QoS) demands. Although centralised schemes
could be envisioned as a solution, they require gathering
all local information in the nodes performing the resource
allocation. This side-information exchange is in contradiction
with the desired resource efficiency, and therefore autonomous
schemes must be considered. In such protocols, the nodes
compete for the shared resources, mainly based on local
information. The challenge is then to provide conditions on
the environment ensuring the nodes’ interaction settles to an
equilibrium at which their QoS requirements are satisfied.

II. STATE-OF-THE-ART

Studying the interactions between wireless nodes has tra-
ditionally been tackled with the competitive Game Theory
(GT) framework. Among others, such tool enables to obtain
conditions guaranteeing the nodes’ interaction settles to a
unique equilibrium, named the Nash Equilibrium (NE) [1].
The caveat with this perspective is that the coupling between
the nodes is assumed to lie in their objective functions, while
their strategy set is fixed. When considering QoS constraints,
the modelling of the q-th node instead looks as follows:

minimisexq 1,
s.t. xq ∈ Xq (x−q) ,

with xq the strategy of the q-th player and x−q the strategy
of all the other nodes except the q-th one. Given x−q ,
the constant unit objective represents the fact the player is
indifferent between all resource profiles xq fulfilling its QoS
requirements, i.e., lying in the player-dependent strategy set
Xq (x−q). Due to the constraint coupling, the interactions
can be modelled as a Generalised Nash Equilibrium Problem
(GNEP) with constant objective functions. In this context,
the goal is to reach in an autonomous manner a Generalised
Nash Equilibrium (GNE), which is a point at which all
users have their QoS demands satisfied. However, except in
some peculiar cases, totally autonomous schemes converging
towards the equilibrium are lacking.

Guillaume Thiran is a Research Fellow of the Fonds de la Recherche
Scientifique – FNRS.

III. CONTRIBUTIONS

To tackle this problem, we design an algorithm compatible
with autonomous nodes, and obtain the associated conver-
gence conditions.

This algorithm, which is an instance of the totally asyn-
chronous Best Response Dynamics (BRD), works by letting
each player specify its utopia strategy x

(u)
q , i.e., the strategy

which would be chosen if there were no QoS requirements.
Then, the algorithm amounts for each player at projecting x

(u)
q

on the strategy set Xq (x−q), considering x−q as fixed. The
asynchronous character of the algorithm follows from the fact
updates can happen at any time and possibly with outdated
information about the other player strategies.

Conditions guaranteeing the convergence of this algorithm
towards a GNE are obtained, under convexity, non-emptiness
and differentiability assumptions. Moreover, it is assumed the
strategy set can be represented by linear constraints with a
variable Right-Hand Side (RHS), i.e., with constraints of the
following form:

pqxq ≤ γq (x−q) ,

where pq is a fixed vector and γq (x−q) a possibly non-
linear function of the other players’ strategies. The obtained
conditions only depend on the vectors pq and RHS functions
γq (x−q), ensuring convergence whatever the selected utopia
point.

IV. RANDOM ACCESS RESOURCE MANAGEMENT

Highlighting the impact of the proposed QoS satisfaction
game methodology, a random access resource management
problem is tackled. In an ALOHA-like random access scheme,
devices tune their transmission probability under minimum
rate and maximum power specifications. The rate requirement
is coupled with the other devices, since communications are
considered successful only when a single device is active, i.e.,
when there are no collisions. Formulating these interactions
into the GNEP framework, the convergence conditions of
the developed algorithm are shown to be fulfilled for low to
moderate rate demands, analytically and numerically. Finally,
a generalisation of the above is considered, in which nodes
can assign probabilities not only to the binary states idle and
active, but to a multi-power level scheme.
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I. INTRODUCTION

In order to provide users with an immersive extended
reality (XR) experience using a head-mounted display (HMD)
that is both small and simple, remote rendering on a nearby
edge server or computer is necessary [1]. To transmit the wire-
less XR content, millimeter-wave (mmWave) communication
technology can be used due to its sufficient data rate [2].
However, mmWave channels have a sparsity problem in the
angular domain, which means that distributed antenna arrays
are needed to cover a larger angular area and to prevent outages
when the HMD is rotated [3]. Despite this, a system with
fewer antenna elements/arrays would be preferred due to lower
complexity. Therefore, it is important to assess the trade-off
between the number of antenna arrays and system performance
to determine the best practical solution. This study presents
indoor 28GHz mmWave channel measurement data collected
during HMD mobility, focusing on the dominant eigenmode
(DE) gain. The DE gain is a critical factor in understanding
system performance, as the sparsity of the mmWave channel
and eigenmode imbalance often result in most of the available
power being allocated to the DE. The DE gain also gives the
upper bounds of achievable analog beamforming gain. Please
note that this introduction is elaborated in [4].
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nology, and Ericsson.

REFERENCES

[1] F. Firouzi et al., “The Convergence and Interplay of Edge, Fog, and
Cloud in the AI-Driven Internet of Things (IoT),” Information Systems,
vol. 107, p. 101840, 2022.
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Abstract—Anesthesia-related hypotension is an adverse event
during surgery that may occur within 15 minutes after induction
and may lead to serious complications. Since the anesthetic drug
is believed as an important role in the occurrence of post-
induction hypotension (PIH) [1], anesthesiologists now advocate
for the appropriate selection of anesthetics dosage to avoid PIH.
To facilitate the selection, an accurate prediction of PIH associ-
ated with certain dosage of anesthetics is necessary. Electronic
health records (EHRs) and machine learning (ML) technology
have the potential in improving the accuracy of prediction,
thereby aiding in the decision-making of anesthesia.

The existing machine learning studies on PIH prediction face
three main limitations. First, current methods rely on pre-
existing data regarding anesthetics as inputs. This means that
predictions can only be made after the induction process and
thus can not offer decision support. Furthermore, many studies
in hypotension prediction lack generality. For example, the use of
continuous blood pressure measurement for general anesthesia is
not common, yet the features collected by that are often of high
importance in models [2]. Some features are also not available
outside of the research context. Finally, the binary classification
outputs, typically the occurrence of PIH some minutes later, are
often useless for anesthesiologists to decide on anesthetic plans.

In this paper, we present a prediction model of PIH that
supports anesthesia decision-making. The model is trained on
EHRs of 913 patients undergoing general anesthesia in VitalDB
[3], with 182 of them randomly separated for testing. Multiple
injections are given in each case, resulting in approximately 3300
and 830 records for the training and test datasets, respectively.
Fig 1.(a) shows three records. Besides features extracted from
demographic data and vital signs, we also include the dosage
of propofol (an anesthetic drug) as features before injections,
mimicking an anesthetic plan in clinic.

We plan to evaluate the performance of different models under
various settings, including different outputs (PIH defined as mean
arterial pressure (MAP) <60, or as △MAP>20%), as shown
in Fig 1.(b), and different algorithms (random forest [RF] [4]
and extreme gradient boosting [XGBoost] [5]). On the testing
dataset, RF classifier and XGBoost classifier achieve an average
area under the receiver operating characteristic curve of 0.75
(precision = 0.74, recall = 0.70) and 0.82 (precision = 0.76, recall
= 0.78), respectively, on the prediction of hypotension defined as
△MAP >20%. We believe utilizing EHRs data to predict HIP

can be useful for anesthesiologists in determining the appropriate
anesthetic plan.

Fig. 1. Signal segments of anesthetic (propofol) injection rate and arterial
pressure. (a) The prediction of HIP is performed before every injection. In each
prediction, new vital signs and data about the upcoming dose to be injected
are included. (b) The simultaneous drop in arterial pressure, highlighted by
the rectangle, represents an occurrence of hypotension. It meets both of the
two definitions of hypotension - MAP <60 and △MAP >20%.
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Abstract—Multiagent systems have gained significant attention
in recent years due to their potential to address complex prob-
lems. In applications such as autonomous sensing networks [1]
and satellite interferometry [2], agents must maintain geometric
patterns known as formations. Therefore, the distributed control
of these agents is extensively studied in relevant fields. Currently,
a substantial amount of literature focuses on using relative
positions for formation control and maneuvering, as they can be
acquired without access to global positioning [3]. In particular,
[4] proposed a suite of distributed linear controllers for affine
maneuver control where agents can track a prescribed trajec-
tory that is a time-varying affine transformation of a desired
configuration. However, since noisy measurements that construct
the relative positions cannot be avoided, the convergence and
tracking trajectories are subject to variations. In high-cost
cases such as space applications, the noisy trajectory leads to
excessive energy and time costs. Conventional filtering usually
takes multiple independent snapshots of the relative positions
for one control step and proposes estimators such as Maximum
Likelihood Estimator (MLE) or Bayesian estimators to reduce
the variance [5]. However, this is a strong assumption as the
sampling rate cannot always be guaranteed. In such situations,
filtering must take advantage of past information.

In this work, we aim to smooth the trajectory of agents in a
distributed formation control framework. As the local control law
of the agents takes relative positions from the neighborhood, we
develop algorithms to estimate them from the noisy observations
without increasing the sampling rate. Note that this is different
from the conventional conception of smoothing, as the processing
is embedded in the real-time control loop, and the data is only
available up to the current time step. One of our proposed
filters adopts the philosophy of quadratic smoothing [6], where
the squared norm of the pairwise difference of two successive
noisy measurements is accounted for as a regularization in
the regression. A proper time window is applied to the past
observations to reduce the problem size and computation time. As
this formulation has analytical solutions, it is numerically efficient
and thus suitable for real-time control systems. We also study the
relative kinematics of the systems and propose a relative state-
space model for a Kalman filtering solution. As the proposed
filters process the local variables, they can be implemented
distributedly. Fig. 1 shows an example of a smoothed trajectory
compared to an unfiltered one. The smoothness improvement
using the proposed solutions is evident. Quantitative evaluation
can also be performed in terms of, for example, the variance
from multiple Monte Carlo runs. Note that our smoothing
techniques are also compatible with [7] where observations losses
are compensated by Kalman filtering with geometry constraints.

Index Terms—formation control, trajectory smoothing, dis-
tributed filtering

This work is partially funded by the Sensor AI Lab, under the AI Labs
program of Delft University of Technology.

(a)

(b)

Fig. 1. Trajectories of a 2D formation across time. The formation involves
10 agents with the orange ones, the leaders, being GPS informed. The rest
majority observe relative positions in the neighborhood for the local controller.
(a) The trajectory of an unfiltered system using noisy observations of relative
positions. (b) The trajectory of the system using the quadratic smoothing
technique. Kalman filtering shows similar performances.
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I. INTRODUCTION

The Control Area Network (CAN) standard is a
communication standard for cabled bus networks that
is widely used in industrial environments. The CAN
protocol implements the Carrier Sense Multiple Ac-
cess/Non Destructive Arbitration (CSMA/NDA) protocol
for medium access control. Since CSMA/NDA requires
full-duplex transceivers, it was widely believed that
CAN communications could not be implemented with
wireless transceivers. In this paper, we demonstrate that
it is possible to implement the CSMA/NDA protocol
using On-Off Keying (OOK) modulation. We realize
a proof-of-concept implementation using off-the-shelf
wireless OOK transceivers, and show that our wireless
transceivers are fully compatible with CAN controllers
available on most micro-controller systems.

II. WIRELESS CAN PROTOCOL AND
PROOF-OF-CONCEPT IMPLEMENTATION

In this work, we propose to use the On-Off Key-
ing (OOK) modulation format to implement wireless
CSMA/NDA. This idea was first proposed theoretically
in [1], and tested experimentally with software-defined
radios in [2]. The block-diagram of a wireless CAN
system is shown in Figure 1. The full paper will present
a more detailed analysis of the wireless CAN system, as
well as it’s limitations.

Fig. 1. Block diagram of a wireless CAN transceiver. The CAN
controller is identical to one that can be used for cabled CAN
buses, whereas the OOK Tx/Rx are conventional, off-the-shelf OOK
transceivers.

The proposed system was implemented with off-the-
shelf elements. To test our design, three nodes were
realized and operated simultaneously. Node A transmits

a message continuously with CAN ID 0x036 (low
priority). Node B transmits a message every 100 ms with
CAN ID 0x030 (higher priority). Node C just listens
and acknowledges messages from the first two nodes
(thus acting as the bus listener). An oscilloscope was
used to measure three channels simultaneously: Channel
1 measures the DATA signal of the OOK transmitter of
node A, Channel 2 measures the DATA signal of the
OOK transmitter of node B, Channel 3 measures the
DATA of the OOK receiver of node C (and is therefore
just listening to the shared channel).

Figure 2 shows a result when operating the WiCAN
nodes. The result show that nodes A and B are suc-
cessfully able to implement the CSMA/NDA protocol
over-the-air. The full paper will provide a detailed in-
vestigation of the experimental results.

Fig. 2. Result of three Wireless CAN nodes operating simultaneously
over a single data frame.
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Abstract—Likelihood is a quantity that is used in
various statistical approaches. For Bayesian models
in combination with data sets an expression for the
variance of the likelihood is derived in this paper.
In this context, the paper introduces and studies the
notion of a ”self-likelihood” that quantifies to what
extent a particular sample fits the model, inferred
from all available samples, including the sample of
interest itself. The variance turns out to be propor-
tional to the difference of the self-likelihood and the
ordinary likelihood. As the self-likelihood depends on
the sample of interest, so will the variance depend on
the sample of interest.

I. INTRODUCTION

In statistical approaches, the likelihood quantifies
how likely an observation is from a model per-
spective. The model is usually obtained by fitting
parameters of a model on a data set. The fitted
model is then used to compute likelihoods of (new)
samples. Likelihoods of samples are used in various
applications such as outlier detection. In order to
draw reliable conclusions one should not only con-
sider the likelihood value but also its uncertainty.
In fact, the likelihood of a sample is a random
variable, that can be seen as a function of the value
of the current and earlier samples. Therefore, it is
the object of this paper to find a relation between
the likelihood value and its variance. In the next
section, we will introduce the problem via a specific
example. In the second and third section, we will
define and derive the variance of the likelihood.
We formulate a definition of the variance, and
we interpret an intermediate results as a ”self-
likelihood”. We further express how the likelihood
and its variance can be obtained iteratively, as new
data samples become available.

II. EXAMPLE: DAY-TIME WINTER
TEMPERATURES IN NL

In this example we would like to learn about the
population being the day-time temperature in the
winter in the Netherlands. Somehow we know that
it is normally distributed with a standard deviation
of σ = 5 degrees but we do not know the mean of
the population. If we would know the mean θ, then

the probability density (pdf) of the temperatures
would be

p(x|θ) = 1√
2π σ

e−(x−θ)2/(2σ2). (1)

Thus, we simplify the notation pX(x) into p(x) as
it is clear for which random variable we express
the pdf. A priori, we may have a belief about the
mean of the population. In this example, we belief
the mean is 4, thus θ0 = 4 degrees Celsius with
a standard deviation of σθ = 3 degrees (again
normally distributed)

p(θ) =
1√
2π 3

e−(θ0−θ)2/(2σ2
0). (2)

Combining the prior with our model, our belief
on the day-time winter temperature distribution
becomes

p(x) =

∫
dθ p(x|θ) p(θ). (3)

where we introduced the notation p(x) for the prob-
ability on x averaged over all model parameters θ.

Now suppose we are given data X1:2 containing
2 independently drawn day-time winter tempera-
tures X1 and X2 of the Netherlands being x1 = 8
and x2 = 11 degrees Celsius. This enables us to
compute the posterior using Bayes rule

p(θ|x1:2) =
p(x1:2|θ) p(θ)

p(x1:2)
(4)

=
1

p(x1:2)

1

2πσ2

× e

(
− (x1−θ)2

2σ2 − (x2−θ)2

2σ2

)

p(θ), (5)

where x1 = 8, x2 = 11, and p(x1:2) is

p(x1:2) =
1

2πσ2

∫
dθ e

(
− (x1−θ)2

2σ2 − (x2−θ)2

2σ2

)

p(θ)

(6)
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θ p(θ|x1:2 = {8, 11}) p(x = −9|θ)
-2 .00024 .030
-1 .0011 .022
0 .0039 .016
1 .012 .011
2 .030 .0071
3 .061 .0045
4 .11 .0027
5 .15 .0016
6 .17 .00089
7 .17 .00048
8 .13 .00025
9 .087 .00012

10 .047 .000058

TABLE I: For various parameter values θ, the
center column gives the posterior after observing
8 and 11 degrees Celsius and the last column gives
the likelihood of for seeing -9 degrees Celsius.

After having seen the data our new belief on seeing
a day-time temperature of x3 = −9 degrees Celsius
becomes

pM(x3|x1:2) =

∫
dθ p(x3|θ) p(θ|x1:2) (7)

=

∫
dθ

1√
2πσ

e

(
− (x3−θ)2

2σ2

)

p(θ|x1:2)

(8)
= 0.0015 (9)

Intentionally, we use the symbol pM() rather
than p(), eventhough in this case it is also a pdf.
Later we will rediscuss the role of pM, in particular
to refine the pseudo dependency of x3 of x1:2 via
θ.

Fig. 1: Approximate histogram of the occurrence
of likelihoods p(x3 = −9|θ) in Eq. 7. Upon
integration over θ some likelihood values p(x3|θ)
contribute to the integral more than others due to
the posterior and the integration domain.

In this paper, we will show that the likelihood
as computed above deserve careful interpretation.
Table I shows for various parameter values the
posterior (weight) and the likelihood of seeing -
9 degrees Celsius. Some likelihoods appear ”more
often” in the integral than others. How much a
certain likelihood contributes to the mean is shown

in Figure 1. The computed likelihood of .0015 is
basically a weighted mean and the importance of
the mean depends on the spread of the underlying
likelihoods. In this paper, we will show that the
standard deviation being the root mean square
deviation on those likelihoods can be computed
analytically for any type of distribution. For the
sample of -9 degrees Celsius, the standard devi-
ation turns out to be 0.0022 which is quite large
compared to the mean likelihood of 0.0015. For
the sample of 4 degrees Celsius the likelihood is
0.066 and the standard deviation turns out to be
0.014 which is relatively much smaller.

III. MATHEMATICAL FORMULATION

The data is assumed to be multi-dimensional and
a data set consisting of N samples will be denoted
by x1:N . Throughout this paper, it is assumed
that all samples are independently drawn from a
population. For instance, if x1:N would be a time
series, there is no memory. In particular, samples
are conditionally independent p(xN+1|x1:N ; θ) =
p(xN+1|θ), thus for a given model with parame-
ters θ, samples 1 : N give no extra information
about xN+1. Note that this does not imply that
P (xN+1|x1:N ) = P (xN+1). In fact, x1:N reveal
information about θ thus also about xN+1: after
seeing X1:N−1, one can refine the posterior param-
eter distribution p(θ|x1:N ) being

p(θ|x1:N ) =
p(x1:N |θ) p(θ)∫

dθ′ p(x1:N |θ′) p(θ′) . (10)

The posterior can be interpreted as measure of how
likely the parameter θ is in the ensemble of all
possible models. The denominator normalizes the
posterior probability to unity.

When being confronted with a new sample xN+1

one can compute the average likelihood

Eθ|x1:N
[P (xN+1|θ;x1:N )]

=

∫
dθ p(xN+1|θ;x1:N ) p(θ|x1:N ) (11)

=

∫
dθ p(xN+1|θ) p(θ|x1:N ). (12)

Here, we used that samples are conditionally in-
dependent, thus (P (y|X1:N ; θ) = P (y|θ)), and
that all information from the previous samples
can be collapsed into θ. Following the example
discussed earlier, we introduce the following short-
hand notation

pM(xN+1|x1:N ) =

∫
dθ p(xN+1|θ) p(θ|x1:N ).

(13)
The distribution of a new sample x3 has a pseudo
dependence on previous observed samples X1:N as
previous samples affect the parameter distribution
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θ of the model M. Later on, in (21), we extend the
above definition of pM.

IV. VARIANCE OF LIKELIHOOD OF A NEW
SAMPLE

The likelihood of seeing a new sample xN+1 was
computed by averaging the likelihood p(xN+1|θ)
over the posterior p(θ|x1:N ). When judging
whether this likelihood is low, such that we would
need to qualify it as an outlier, we have to acknowl-
edge that the likelihood depends on θ while earlier
samples constrain θ. The resulting distribution of θ
gives rise to a standard deviation of the likelihood
which is defined as the root mean square of the
deviations with regards to the mean.

σ2
pM(xN+1|x1:N ) (14)

= Eθ|x1:N
[p(xN+1|θ, x1:N )− pM(xN+1|x1:N ))

2

Here, all terms are conditioned on x1:N The
conditioning of the first term is not relevant,
because we assumed conditional independent
P (xN+1|θ, x1:N ) = P (xN+1|θ). This gives

σ2
pM(xN+1|x1:N ) (15)

= Eθ|x1:N

[
(p(xN+1|θ)− pM(xN+1|x1:N ))

2
]

=

∫
dθ (p(xN+1|θ)− pM(xN+1|x1:N ))

2
p(θ|x1:N )

Before the variance is derived, it will turn out
to be useful to estimate the posterior for a data
set x1:N+1 which is the original data set x1:N

that is extended with xN+1. Using Bayes rule
p(x1:N |θ)p(θ) = p(θ|x1:N )p(x1:N ) and condi-
tional independence of xN+1 and x1:N gives

p(θ|x1:N+1) =
p(xN+1|θ) p(x1:N |θ) p(θ)∫
dθ′p(xN+1|θ′)p(x1:N |θ′)p(θ′)

(16)
Dividing enumerator and denominator by P (x1:N ),
gives

p(θ|x1:N+1) =
p(xN+1|θ) p(θ|x1:N )∫

dθ′ p(xN+1|θ′) p(θ′|x1:N )
(17)

Using the definition pM this gives

p(θ|x1:N+1) =
p(xN+1|θ) p(θ|x1:N )

pM(xN+1|x1:N )
, (18)

The variance (Eq. 15) can now be computed using
Eq. 16:

σ2
pM(xN+1|x1:N ) (19)

=

∫
dθ (p(xN+1|θ)−pM(xN+1|x1:N ))

2
p(θ|X1:N )

= pM(xN+1|x1:N )2

+ pM(xN+1|x1:N )

∫
dθ p(xN+1|θ)p(θ|x1:N+1)

This result can be interpreted as

σ2
pM(xN+1|x1:N ) = pM(xN+1|x1:N )

× [pM(xN+1|x1:N+1)− pM(xN+1|x1:N )] , (20)

where we introduced the self-likelihood
pM(xN+1|x1:N+1). That is, we generalized
the conditioning to cover a ”self-likelihood”,
defined as

pM(xN+1|x1:N+1) =

∫
dθ p(xN+1|θ)p(θ|x1:N+1).

(21)
Thus, we use not only X1:N but also the newest
data XN+1 to refine the distribution of model
θ and then obtain the likelihood of XN+1 from
that model distribution. In fact, we define self-
likelihood strictly as in the form of the integral (21),
thus without the conditioning of the probability
XN+1 on XN+1 itself, but only indirectly via a
conditioning on θ. The self-likelihood allows us the
identify likelihood of the latest sample where the
latest sample is also used to establish an estimate
of the model.

Note that the variance as defined in the Eq. ?? is
non-negative, so the right hand side of Eq. (20)
must also always be positive. In other words,
the above equations prove that the self-likelihood
of new data is always larger than the like-
lihood based on previous data only. That is,
PM(xN+1|X1:N+1) ≥ PM(xN+1|X1:N ), which is
intuitively appealing.

DISCUSSION AND CONCLUSION

Likelihood is a well-known quantity that is
extensively used in statistical approaches. For a
Bayesian model fitted on a data set, this paper
defines the variance of the likelihood and derived
an expression for it. The variance of likelihood for a
new sample turns out to include additional posterior
estimations that include that new sample. To derive
an expression for the variance, we introduced the
notion of ”self-likelihood” to quantify a likelihood
of a a new data sample, where we include that
data sample itself to refine the inferred model
parameters under which the likelihood (variance)
is calculated. If the new posteriors substantially
deviate from the old posterior then the variance will
be large.

The variance estimation can be an alternative
to the use of heavy-tailed distributions [1]. Such
distributions are used to generate the largest tails
possible given the data. This has the benefit that
computed likelihoods can be seen as an upper
limit so if it falls below a certain value it can be
confidently considered to be an outlier. In this paper
we showed that a variance calculation for a new
sample involves a self-likelihood distribution that is
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especially high at the sample of interest. Therefore,
it could be seen as generating a tail only in the
direction of the new sample which would further
increase the confidence.

We showed that the variance can be derived via
additional posterior estimations, but such posterior
estimations may be numerically expensive. In some
cases such as novelty detection [2], one continu-
ously updates the posteriors on incoming new data
for improving the model description. An estimation
of the variance may be of increasing interest in such
applications.
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Change point detection (CPD) aims to identify abrupt
changes in the statistics of signals or time series, which
reflect transitions in the underlying system. Most existing CPD
methods are either built in fully supervised or unsupervised
settings. Supervised methods treat the task as a multi-class [1]
or binary [2] classification problem. Although they present
acceptable performance in specific application fields, fully-
labeled datasets are required during the training process,
which can be difficult or impossible to obtain. Additionally,
supervised methods may not generalize well to new application
domains. Unsupervised methods [3]–[5] can address these
limitations, but they cannot determine which type of change
points the user is interested in, resulting in numerous undesired
candidates and the possible omission of crucial, yet subtle
changes..

To bridge the gap between supervised and unsupervised
approaches, we introduce an active learning strategy for
CPD. Specifically, we use the one-class classification model
OCSVM [6], which is designed for novelty detection. This
model can handle imbalanced data and detect outlier sam-
ples with change-relevant information. Our interactive CPD
algorithm (ICPD) incorporates an active-learning strategy that
leverages user feedback to improve the OCSVM model’s
learning process.

Our work has the following contributions:
(1) We introduce OCSVM as a core classifier for CPD

within a novelty detection framework, which can overcome
the issue of imbalanced training data.

(2) We develop an ICPD model that allows users to provide
feedback and only report change points of interest.

(3) We demonstrate the effectiveness of the ICPD algorithm
in detecting change points in both single- and multi-channel
time series data, using both simulated and real-life datasets.

Index Terms—Active learning, Change point detection, One-
class support vector machine
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Abstract—Multi-agent systems (MAS) are commonly used
in various applications such as robotics, transportation, and
communication systems [1] [2] [3] [4]. Ensuring collision-free
navigation among these agents is critical to guarantee their safe
operation, which often requires precise knowledge of the locations
of the agents and/or a known formation of the network [2]- [4]. In
this paper, a framework is proposed to find the required actuator
inputs directly from relative position measurements between
network agents, which combines Maximum Likelihood Estimator
(MLE) [5] and Model Predictive Control (MPC) techniques [6].

A set of agents denoted by K are tasked with reaching
individual target positions without colliding with each other. To
facilitate coordination, a communication graph Gs(K, Ec) and a
sensing graph Gs(K, Es) are constructed with communication and
sensing radii of rc = rs, respectively. A single connected directed
graph G(K, E) is assumed to exist, and the initial positions of all
agents p0

k in D dimensions are known with high accuracy, either
in the absolute or relative reference frame. All agents operate
under single discrete integrator dynamics, where each agent’s
velocity is given by ṗk(n) = uk(n). The agents’ positions at each
time step are updated by a noisy discrete state transition function,
given by pn

k = pn−1
k +un−1

k ∆t+ηk, where ηk ∼ N (0,Σ1) is the
state transition noise. The tracking posterior for each agent is
defined as p(pn

k |pn−1
k ,un−1

k ). The relative position measurement
between agents k and j is given by ek,j = pj − pk, and the
noisy measurements are defined as wn

k,j = en
k,j + ξk,j , where

ξk,j ∼ N (0,Σ2). The probability distribution of relative position
is denoted by p(e(pn

k ,p
n
j )|wn

i,j).
A cost function is formulated for all agents in a global

context in 1a. The cost function has two components: the
first minimizes the negative likelihood of state transitions and
relative position measurements [5], while the second minimizes
the distance between agents’ current positions and their goals
over a time horizon T . A weighting parameter α balances these
two objectives. Constraints include the dynamic model in (1b), the
relationship between positions and relative measurements in (1c),
a maximum velocity constraint in (1d), and a collision constraint
in (1e), where ηk,j =

p̄n+τ
k

−p̄n+τ
j

||p̄n+τ
k

−p̄n+τ
j || [6].

min
Pn,Un

− α{
∑

k∈K
ln p(pn

k |pn−1
k ,un−1

k ) +
∑

k,j∈E
ln p(en

k,j |wn
k,j)}

+ (1− α)
∑

k∈K

T−1∑

τ=0

||pn+1+τ
k − pgoal,k||2
||pn

k − pgoal,k||2
(1a)

s.t. pn+τ+1
k = pn+τ

k + un+τ
k ∆t (1b)

en
k,j = pn

j − pn
k ∀(k, j) ∈ E (1c)

||un+τ
k || ≤ umax ∀k ∈ KC (1d)

||p̄n+τ
k − p̄n+τ

j ||+ η
(n+τ)T
k,j [(pn+τ

k − pn+τ
j )

− (p̄n+τ
k − p̄n+τ

j )] ≥ rcollision (1e)

The optimization problem is solved using Convex.jl. The
proposed joint framework can achieve collision-free navigation
towards individual targets for all agents, assuming the existence

of a suitable path. In figure 1, we show an example of a system of
four agents. At t = 1, The agents’ position is visualized with the
path resulting from the above optimization problem in a dashed
line. The respective goals are shown separately. At t = 15, it
can be seen that the agents in blue and green risk a potential
collision and react accordingly. At t = 33, further progression
towards the goals is made.

Fig. 1. Example trajectory for four agents at different time-steps. Dashed is
the predicted trajectory over horizon T .

39



REFERENCES

[1] R. T. Rajan, G. J. T. Leus, and A. J. van der Veen, “Relative kinematics
of an anchorless network,” Signal Processing, vol. 157, 2019.

[2] L. Ferranti, L. Lyons, R. R. Negenborn, T. Keviczky, and J. Alonso-Mora,
“Distributed Nonlinear Trajectory Optimization for Multi-Robot Motion
Planning,” IEEE Transactions on Control Systems Technology, pp. 1–16,
2022.

[3] X. He, Q. Wang, and Y. Hao, “Finite-time adaptive formation control
for multi-agent systems with uncertainties under collision avoidance
and connectivity maintenance,” Science China Technological Sciences,
vol. 63, no. 11, pp. 2305–2314, Nov. 2020.

[4] B. Yan, P. Shi, C.-C. Lim, and Z. Shi, “Optimal robust formation control
for heterogeneous multi-agent systems based on reinforcement learning,”
International Journal of Robust and Nonlinear Control, vol. 32, no. 5,
pp. 2683–2704, 2022.

[5] A. Simonetto and G. Leus, “Distributed maximum likelihood sensor
network localization,” IEEE Transactions on Signal Processing, vol. 62,
no. 6, pp. 1424–1437, 2014.

[6] F. Rey, Z. Pan, A. Hauswirth, and J. Lygeros, “Fully Decentralized
ADMM for Coordination and Collision Avoidance,” in 2018 European
Control Conference (ECC), Jun. 2018, pp. 825–830.

40



Identifying Temporal Correlations Between Natural
One-Shot Videos and EEG Signals

1st Yuanyuan Yao
Dept. of Electrical Engineering, STADIUS

KU Leuven
Leuven, Belgium

yuanyuan.yao@esat.kuleuven.be

2nd Axel Stebner
Dept. of Electrical Engineering, PSI

KU Leuven
Leuven, Belgium

axel.stebner@esat.kuleuven.be

3rd Tinne Tuytelaars
Dept. of Electrical Engineering, PSI

KU Leuven
Leuven, Belgium

tinne.tuytelaars@esat.kuleuven.be

4th Simon Geirnaert
Dept. of Electrical Engineering, STADIUS

Dept. of Neurosciences, ExpORL
KU Leuven

Leuven, Belgium
simon.geirnaert@esat.kuleuven.be

5th Alexander Bertrand
Dept. of Electrical Engineering, STADIUS

KU Leuven
Leuven, Belgium

alexander.bertrand@esat.kuleuven.be

Abstract—Understanding how naturalistic stimuli such as au-
dio and video are encoded in the brain is a fundamental challenge
in brain-computer interfaces (BCIs). A popular technology to
record neural responses is electroencephalography (EEG), which
records electrical activity of the brain through electrodes attached
to the scalp. While neural responses to natural speech have been
successfully decoded from EEG [1], [2], the decoding of natural
video footage from EEG has not received much attention. It is a
challenging problem due to the high-dimensional nature of video
signals and the notoriously low signal-to-noise ratio (SNR) of
EEG signals. Findings in this area will bring new experimental
paradigms in BCIs and lay foundations for applications such as
visual attention decoding.

A few studies found significant inter-subject correlations in
the EEG signals of subjects watching the same video clips using
Correlated Component Analysis (CorrCA) [3]–[5], indicating the
existence of EEG components that are time-locked to the visual
stimuli. However, it is not clear by what characteristics of the
video these responses were driven. In [5], the authors extracted
the derivative of pixel intensity (temporal contrast) as a feature
and found that it was correlated with the first shared EEG
component obtained by CorrCA. Apart from temporal contrast,
the average velocity of pixels calculated from the optical flow
was also shown to be correlated with individual EEG signals
using Canonical Correlation Analysis (CCA) in [6]. These results
suggest that the temporal contrast and optical flow may elicit
strong time-locked EEG responses.

In this work, we argue that the correlations found in [5]
and [6] are mainly driven by scene cuts in the videos, i.e.,
sudden changes from one scene to another, instead of changes in
pixel intensity or average velocity of pixels. To avoid introducing
confounds related to scene cuts and to reduce the complexity
of stimuli, we select a set of one-shot videos containing a single
moving object (a person) and record the EEG signals of subjects

This research is funded by the Research Foundation - Flanders (FWO)
project No G081722N, the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant
agreement No 802895), the Flemish Government (AI Research Program), and
the PDM mandate from KU Leuven (for S. Geirnaert, No PDMT1/22/009).
The scientific responsibility is assumed by its authors. All authors are also
affiliated with Leuven.AI - KU Leuven institute for AI, Belgium.

watching them. We show that no significant correlations between
the features mentioned above and recorded EEG signals can be
found by CCA in the absence of scene cuts, and propose a new
video feature based on motion that does correlate with the EEG.
Moreover, we also demonstrate that the EEG components found
with the new feature are not driven by eye movements. Finally, we
jointly analyze the EEG signals of all subjects with the proposed
feature as side information using Stimulus-Informed Generalized
Canonical Correlation Analysis (SI-GCCA) [7] (Figure 1), and
show that it leads to higher inter-subject correlations than solely
considering the EEG signals.

Fig. 1: An illustration of SI-GCCA when there are two subjects. The goal is to find EEG
decoders and a shared subspace which is closest to the transformed EEG signals. The
distance between the shared subspace and the transformed visual stimuli is added as a
regularization term.
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ABSTRACT

The advent of streaming and video has revolutionized the
way materials are presented in various fields, including history
and art. Scholars seek a more efficient solution to retrieving
digital materials from videos without spending excessive time
and energy filtering out irrelevant information. The integration
of deep learning methodologies has proven to empower the
search process. Motivated by promising applications in various
fields, we propose and validate a deep-learning-based image
retrieval from video system.

In this paper, we propose decomposing the task into two
stages: detecting keyframes and conducting content-based im-
age retrieval (CBIR), shown in Fig. 1.

In the first stage, the input query video is down-sampled,
denoted as the first box (Keyframe Extraction, KFE). This step

Fig. 1. The pipeline of the Image Retrieval from Video Engine
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uses a color histogram-based clustering algorithm [1]. Each 
frame is processed and modeled into blocks. The histogram 
features of all blocks are concatenated into a feature vector. All 
frame features are then combined to form a feature-frame ma-
trix. Subsequently, it reduces the dimension of the feature ma-

trix. Subsequently, it reduces the dimension of the feature ma-
trix by SVD, as processing large matrices is time-consuming
and limited to improving accuracy. The clustering algorithm
uses cosine similarity check to compare adjacent frames’
similarity and cluster the feature space, detect boundaries,
and extract keyframes. Similarly, another model VSUMM [3]
uses the HSV color model and K-means clustering to obtain
keyframes.

In the second stage, CBIR (see the orange box in Figure 1)
involves Feature Extraction (FE) and Search and Match (SaM).
With regard to efficiency and accuracy, feature extraction is the
most crucial part. We currently use a fine-tuned ResNet101-
based feature extractor in cooperation with GeM Pooling [2].
To better improve efficiency, shallower networks with re-
ranking techniques are also competent in tackling this task.
Re-ranking is a module that uses global features to refine the
retrieval results.

The contribution of this paper is providing an efficient
and accurate image retrieval from video system that could
be applied in historical or multi-media research to expedite
their search process. Table I shows that the current KFE
module outshines state-of-the-art methods when keeping the
redundancy relatively low. This represents a significant im-
provement in accuracy and efficiency. The Mean Efficiency
Ratio (MER) is defined as the average computation time-
to-video duration ratio, reflecting the computational cost. A
smaller MER indicates better efficiency. The proposed method
achieved a 5-fold increase in efficiency compared to VSUMM
and a 10-fold increase compared to the up-to-date color
histogram-based method.

TABLE I
PROCESSING TIME OF DIFFERENT METHODS COMPARISON

Methods Mean efficiency
ratio

Mean
accuracy

Mean
redundancy

VSUMM [2] 0.18 0.87 0.42
Gong [1] 0.35 0.76 0.38
Proposed 0.03 0.95 0.39

43



Barrett’s Neoplasia Detection using a minimal
Integer-based Neural Network for Embedded

Systems Integration
1st Tim G.W. Boers

dept. of electical engineering
Eindhoven University of Technology

Eindhoven, the Netherlands
t.boers@tue.nl

2nd Carolus H.J. Kusters
Eindhoven University of Technology

Eindhoven, the Netherlands

3rd Kiki N. Fockens
Amsterdam University Medical Center

Amsterdam, the Netherlands

4th Jelmer B. Jukema
Amsterdam University Medical Center

Amsterdam, the Netherlands

5th Martijn B . Jong
Amsterdam University Medical Center

Amsterdam, the Netherlands

6th Jeroen de Groof
Amsterdam University Medical Center

Amsterdam, the Netherlands

7th Jacques J. Bergman
Amsterdam University Medical Center

Amsterdam, the Netherlands

8nd Fons van der Sommen
Eindhoven University of Technology

Eindhoven, the Netherlands

9nd Peter H.N de With
Eindhoven University of Technology

Eindhoven, the Netherlands

Abstract—Despite the popularity of neural networks in medical
studies, such systems are found in peripheral settings and
integrated solutions have not yet been reported for Barrett’s
neoplasia detection. In order to integrate neural networks in
medical equipment, specialized optimizations for preparing their
integration in a high-efficiency and power-constrained environ-
ment are required. In this paper, the feasibility of quantized
networks with limited memory for the detection of Barrett’s
neoplasia is researched. An Efficientnet-lite0+Deeplabv3 archi-
tecture is proposed, which is trained using a quantization-aware
training scheme to achieve an 8-bit integer-based model. The
proposed quantized model with only 4-MB memory is capable of
reaching the similar performance scores of 93.3% Area Under
the Curve (AUC), compared to a full-precision Resnet18+U-
Net architecture, but with a dramatic 92% reduction of the
model size. We have also optimized the segmentation head for
efficiency and reduced the output to a resolution of 32×32 pixels.
These results show that this reduced segmentation head also
achieves a similar level of expression as the U-net model, and
reaches a DICE score of 73%. The proposed lightweight approach
makes the model highly energy-efficient, since it can be real-time
executed on a 2-Watt Coral Edge TPU. The obtained low-power
consumption of the lightweight Barrett’s esophagus neoplasia
detection and segmentation system enables the direct integration
into standard endoscopic equipment.

Index Terms—Embedded systems, full-integer quantization,
Barrett’s neoplasia detection

I. INTRODUCTION

Neural networks (NNs) have become common ground for
the detection and segmentation of neoplastic lesions in Bar-
rett’s esophagus patients. The potential benefits of CADe and
CADx studies have broadly shown that computer-assisted di-
agnosis can successfully facilitate the physician [2]. However,

despite this popularity in research environments, such systems
have not been found in peripheral settings and integrated
solutions have not yet been reported. This gap between the
practical usage in a clinical setting and the broad research
of NNs is still significant. The optimal solution of applying
NNs in practice in the medical domain is integration into
embedded equipment, in this case an endoscopic system.
Integration offers a great advantage for the physicians and
avoids expensive add-on equipment and platforms. Therefore,
this paper aims at exploring the integration of NNs into such
systems. In our case, we have cooperated with an existing
equipment manufacturer1.

However, the execution of NNs in real-time embedded
systems require optimizations for efficiency and training
strategies due to constraints on computational power. Yet,
simple embedded hardware only has limited computational
precision (integer-based) and limited memory capacity, while
modern state-of-the-art NNs require high computational re-
sources beyond the capabilities of many embedded processor
units. Therefore, to facilitate the implementation of NNs on
commercially available medical systems, it is necessary to
reduce the computational footprint, memory usage, and lower
the complexity and adapt the NN to embedded hardware
capabilities, such as integer-based operations.

Optimizations of the NN design can be categorized into
micro-architecture and macro-oriented optimizations. The
micro-architecture optimization focuses on improving the op-
erations in the network layers. For example, a widely adopted

1The cooperation with Olympus Corp., Tokyo, Japan, is acknowledged.
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optimization introduced by Howard et al. [4] is the integration
of depth-wise separable convolutions [8]–[10]. In order to im-
prove quantization compatibility, Sandler et al. [7] introduced
ReLU6. Jacob et al. [6] presented a method to remove the
batch-normalization operations by integrating the normaliza-
tion into the adjacent convolutional layers. The macro-oriented
search is used to optimize the topological structure of a neural
network. These optimizations introduce new modules into the
architecture, which can help to improve accuracy, such as
squeeze-and-excitation [5] and residual modules [3]. Tan et
al. [11] introduced EfficientNet, which optimizes the scaling
of neural networks for depth, width, and input resolution.

Further optimization by quantization can be achieved to
reduce the memory footprint and simplify the operations of
NNs via special training and architectural optimizations. This
technique involves transforming floating-point operations, typ-
ically operated at 32 bits, into low-precision floating-point or
integer values. Recent research has shown consistent success
in the translation to 8-bit integer-precision calculations [6],
[12]. Quantization offers several performance benefits, (1)
the ability to adapt NNs to processors that can only per-
form integer-based operations, (2) improved throughput on
processors optimized for low-precision data formats, and (3)
reduced bandwidth requirements for loading data into memory.
There are two main methods for quantizing NNs: post-training
quantization (PTQ) and quantization aware-training (QAT).
PTQ measures the activation ranges of an already trained NN
using (unlabeled) data, and quantizes the weights and acti-
vations accordingly. Alternatively, QAT involves introducing
quantization noise resulting from rounding errors into the NN
during training, in order to optimize the quantized weights and
activations to achieve a nearly lossless accuracy.

In this paper, we evaluate the feasibility of quantized neural
networks (NNs) for medical applications. In particular, this
work concentrates on the use case of Barrett’s neoplasia de-
tection in white-light endoscopy (WLE). The proposed system
involves the development of an embedded framework, which
combines the EfficientNet-lite [8] encoder plus DeeplabV3
decoder [9] and then transforms the network into a quantized
version, based on QAT to achieve a full-integer-based network.
Finally, the full-integer model is tested on a Coral edge
Tensor Processing Unit (TPU), which is broadly accepted for
computing platforms and is optimized for executing NNs.

In summary, our contributions are threefold. (1) We demon-
strate that full-integer-based NNs achieve comparable per-
formances to single-precision floating-point models for Bar-
rett’s neoplasia detection. (2) An efficient decoder design is
proposed that is optimized for the detection of neoplasia to
further decrease the computing footprint of the NN, while
maintaining good segmentation details. (3) we present an
optimized architecture with a reduced model size of 23%
without performance loss of previously published work. The
authors conjecture that this developed model can be applied to
other endoscopic tasks as well. To our knowledge, we are the
first to study and evaluate an embedded version for endoscopic
Barrett’s surveillance.

II. MATERIALS AND METHODS

A. Data

Collection: A dedicated data set for Barrett’s neoplasia
detection in WLE is collected for training, validating and
testing. The classification labels for the images are based on
a histologically proven ground truth. Clinical research fellows
have manually selected each image and assigned each of them
to a set, based on a patient split, while assuring that each set is
representative for the various tumor characteristics, described
by the Paris classification. De-identification is performed
in line with the General Data Protection Regulation (EU)
2016/679. The training set consists of 6,237 neoplastic images
(1304 patients) and 7,595 Non-Dysplastic Barrett’s Esophagus
(NDBE) images (1,103 patients), the validation set contains
100 neoplastic images (54 patients) and 100 NDBE images
(36 patients). Finally, the test set contains 100 neoplastic
images (50 patients) and 300 NDBE images (125 patients).
Annotation: A subset of 2,651 neoplastic images is delineated
twice by two experts on Barrett’s neoplasia. One delineated
area is the Higher-Likelihood (HL), which contains the area
that is definitely considered neoplasia by the expert. The
second area is the Lower-Likelihood (LL), which is atypical
from normal NDBE tissue, which could be neoplasia. In total,
14 international experts have contributed to the delineations.
For the HL neoplasia delineation, a minimal consensus of
30% DICE is implemented between experts in order to ensure
that both delineate the same area. If the DICE score is less
than 30%, then a third expert is invited to annotate the image
as well. The two most overlapping delineations are then used
to generate the ground truth. Finally, a consensus ground truth
to train the model is defined as the union of the two HL areas
unified with the intersection of the LL areas.

B. Network Architecture

The proposed network architecture is constructed using an
ImageNet-pretrained EfficientNet-Lite0 feature encoder and a
MobileNetV2 DeepLabV3+ segmentation decoder, which are
both optimized for fast and efficient processing of real-time
imagery and compatible for quantization. This architecture is
an optimized design of the model proposed by Boers et al.
[1], where we replace the Efficientnet-lite1 encoder with an
Efficientnet-lite0 encoder.

1) Optimizations at the macro level: The network provides
two output heads for classification and segmentation. This
allows for joint training, and mutual information exchange to
the feature extractor, in order to improve feature learning for
both tasks. In contrast to similar segmentation models, as in
MobileNetV2 [9], the feature maps are downscaled 4 times to
8×8-pixel resolution in the encoder instead of only 2 times,
since this is more resource-efficient. These feature maps are
then up-scaled in the decoder, which outputs a 32×32-pixel
resolution segmentation map. The segmentation mask is then
subsequently up-scaled to the original input resolution. Given
that tumors are blob-like shapes, this resolution preserves
sufficient detail to clearly segment a neoplastic area.
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2) Optimizations at the micro level: The presented en-
coder and decoder architectures are optimized for efficient
processing and compatibility with quantization techniques. To
achieve this, only operations are considered that can efficiently
execute computational tasks in parallel. To this end, depth-wise
separable convolutions have been utilized as a key implemen-
tation, enabling faster processing times on compute-restricted
devices by requiring fewer operations during execution. The
architecture features ReLU6 activation functions that limit
the range of the activation output, significantly improving
its suitability for quantization. These proposed optimizations
enables suitability of quantization of the model, therefore
allowing the integration into resource-constrained and low-
power medical devices for real-time applications.

3) Experimental Setup:

• Software: For Coral EdgeTPU optimizations, the fol-
lowing software packages are employed: Cuda 11.6,
CuDNN 7.6.2, Tensorflow 2.9.1, Tensorflow Model Op-
timization Toolkit 0.7.2 and PyCoral 2.0.0.

• Hardware: All our training experiments are performed
on a desktop with an i9-9820X CPU, 32 GB of RAM
and an RTX 2080 Ti GPU. The final testing of the
quantized model is performed on a Coral Edge TPU,
which is integrated into an MSI GS65 laptop. The Edge
TPU platform is an ASIC accelerator, which makes it
possible to efficiently execute the model on a 2-Watt TPU
and achieves real-time performance using quantized 8-bit
integer operations.

The proposed network architecture is compared to a Resnet-
18+U-net model, which is employed by de Groof et al. [2] in
a clinical setting. The architecture is also compared to the
original Efficientnet-lite1 variant proposed by Boers et al. [1].

C. Training

The training is split into two stages. In the first stage, all
the models are trained in full-float32 precision. The second
stage is used to further fine-tune the 8-bit compatible models
using QAT, by introducing 8-bit integer rounding errors in
the training. This two-stage approach generally leads to better
results for QAT, since the pre-quantized weights start already
at a good minimum in the loss landscape.

The models are trained with a batch size of 32 for 75 epochs
in the first stage, and 25 epochs in the second stage. The
applied optimizer is Adam with AMS-grad with a weight
decay of 10−4, and a learning rate of 10−3 and 10−5 for the
first and second stage, respectively. A step-wise learning-rate
scheduler is used to control the learning rate. For the encoder
head, we employ a binary cross-entropy (BCE) loss function
and for the decoder head of the network, we use a compound
DICE+BCE loss function. Images and segmentation masks
are randomly rotated with θ ∈ {0◦, 90◦, 180◦, 270◦} and
randomly flipped along the x−axis and y−axis with prob-
ability p=0.5. Additionally, random permutations are made
to the contrast, brightness and saturation of the images. The
training images are randomly sampled such that each class

is represented 50%, to compensate for class-imbalance in the
training set.

1) Quantization aware-training (QAT) Scheme: QAT in-
volves introducing rounding errors via a consecutive quan-
tization and dequantization step into the training of the NN
weights. These steps are formally expressed in Equations (1)
and (3) for 8-bit signed-integer quantization. These quantiza-
tion functions are applied to the NN weights and activations.
The quantization function is specified by:

xq = Quant(x, S, Z) = Clip(Round(
x

S
+ Z)), (1)

where parameter xq is the quantized form of the input x, based
on the scale factor S (Real) and the zero-point control value
Z (integer). The Round(·) operation rounds the input to the
nearest integer. The clip function is specified by:

Clip(x) =





−128, x < −128;

x, −128 ≤ x ≤ +127;

+127, x > +127.

(2)

The dequantization function is defined by:

x̂ = Dequant(xq, S, Z) = (xq − Z) · S, (3)

where x̂ is the dequantized float32 value of x with quantization
noise applied. The scaling factor S and the zero-point control
value Z are calculated based the moving-average filtering to
obtain the maximum value α and minimum value β. The
scaling and zero-point control values are computed as follows:

S =
α− β

255
, (4)

Z = −round(β · s)− 128. (5)

D. Full-integer inference scheme

After QAT, the model can be converted, in order to execute
in integer-precision mode using the Tensorflow-lite library. In
this process, the model weights are converted to int8 precision,
batch-normalization folding is applied and all dropout layers
are removed in order to save computation power. After the con-
version, the model requires new computational graphs, which
are provided by Algorithm 1, Algorithm 2 and Equation (6),
which represent the Tensorflow-lite reference implementation.

The following function returns two output values, i.e.
multiplierq and a shiftvalue, which are computed by combining
all scaling factors of the input, filter and output stage, using
the “frexp” function, resulting in:

multiplierq, shiftvalue = frexp
(
Sinput · Sfilter

Soutput

)
. (6)

Here, the first and second output values are together fitting in
the expression “multiplierq * 2**shiftvalue”, which describes
their role as mantissa and exponent value, respectively.
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TABLE I: Performance comparison of the proposed EfficientNet-lite0+DeeplabV3 architecture in 8-bit integer precision,
compared with the EfficientNet-lite1+DeeplabV3 architecture and the float32-precision version baseline U-Net. The presented
results are the average values of 5 full training cycles. The values between the brackets denote the standard deviation.

Design Exec. Size (MB) Size Red. (↓%) AUC (%) Accuracy (%) Sens. (%) Spec. (%) DICE (%)

ResNet18+U-Net Fp32 56.1 -92.30 94.10 (0.80) 83.88 (1.76) 91.66 (2.19) 81.40 (1.84) 72.87 (1.65)
Boers et al. Int8 5.2 -23.21 93.30 (0.12) 80.13 (2.30) 91.50 (0.72) 76.33 (2.83) 69.44 (2.14)
Proposed NN Int8 4.3 baseline 93.77 (0.41) 82.87 (2.66) 90.25 (4.35) 80.42 (4.72) 72.55 (3.40)

Algorithm 1 Full-integer execution of a 2D convolution
Input: Four arrays: input, filter, output, bias. Each array carries its own

quantization parameters S and Z.
Output: An 8-bit feature map as a product of the quantized convolution of

the input and the filter.
function INTEGERCONVOLUTION2D(input, filter, output, bias)

for xi, yi, ci = 1 to Xi, Yi, Ci do // iterate over the width, height and channels

acc = 0 // initialize an accumulator with int32 precision

for xf , yf = 1 to Xf , Yf do // iterate over the filter width and height

acc = acc + (input[xi,yi,ci] + zeropointi) * filter[xf ,yf ]
end for
acc = acc + bias[ci]
acc = MULTIPLYBYQUANTIZEDMULTIPLIER(acc, multiplierq ,

shiftvalue)
acc = acc + zeropointo // acc is shifted by the zeropoint value of the output

acc = CLIP((acc), QUANTIZE(0), QUANTIZE(6)) // ReLU6 in quant. dom.

output[xi, yi, ci] ← CAST(acc) // cast array to int8 precision

end for
return output

Algorithm 2 Multiplication step of the quantized feature map
Input: An input value, multiplier and shifting value
Output: MultiplyByQuantizedMultiplier(accumul., multipl.q , shiftval.)

function MULTIPLYBYQUANTIZEDMULTIPLIER(accumulator,
multiplierq , shiftvalue)

totalshift = 31 - shiftvalue
round = 1 << (totalshift - 1)
result = accumulator * multiplierq + round
result = results >> totalshift
return result

III. RESULTS

This section presents the detection results of the NNs. The
experiments are repeated 5 times with a different initialization
of the network heads and data augmentation for each NN.
Table I reports the mean results along with the standard
deviation between brackets. The results are based on the
output of the segmentation head, where the neoplasia score
(classification) is defined as the maximum pixel value in the
segmentation mask. A detection is therefore regarded positive
when this value exceeds a threshold of 0.5. Our quantized
network executes at more than 35 frames/second.

IV. DISCUSSION AND CONCLUSION

This work presents a novel lightweight quantized 8-bit
architecture that enables real-time execution on resource-
constrained or embedded computing devices for endoscopic
surveillance of Barrett’s esophagus neoplasia. This architecture
constitutes a refinement of the model proposed by Boers et
al. and achieves similar performance with a 23% reduction in
model size. Moreover, the proposed model demonstrates also

(a) (b)

Fig. 1: Examples of the obtained heat maps from the segmen-
tation head of the EfficientNet-lite0+DeeplabV3 architecture
used for Barrett’s neoplasia detection.

comparable detection performances as a full-precision U-Net
architecture, but with a dramatic 92% reduction in model size.
In addition, the proposed model achieves a real-time video
frame rate of more than 35 frames/second when executed on
a 2-Watt Coral Edge TPU, which is particularly noteworthy
for power-constrained solutions in the medical field.

The proposed decoder yields a DICE score of 72.55%,
which demonstrates that the proposed model has similar ex-
pressive capabilities as a U-net model for the detection of Bar-
rett’s neoplasia. Hence, the 32×32 segmentation map provides
sufficient resolution to capture the shape of the neoplastic
region, enabling clinicians to identify and address potential
neoplastic areas in the esophagus (refer to Figure 1). The
implementation of this low-resolution segmentation head is
beneficial in the sense that it reduces the number of operations,
while maintaining a detailed segmentation of the tumor, thus
highlighting the neoplastic area.

Furthermore, although the presented model is already rela-
tively small, it can still be further reduced in size by utilizing
model pruning. This technique involves the removal of model
filters that do not significantly contribute to the prediction
results of the network, while maintaining the original perfor-
mance level. Future research could explore the impact of this
technique on the proposed architecture, potentially leading to
further reductions in model size and computational complexity.
Moreover, it would be advantageous to investigate the impact
of various quantization strategies on the performance of the
model, as this could provide further optimization opportunities
and facilitate the design of even more efficient architectures.

Finally, in order to thoroughly evaluate the proposed
system, it would be beneficial to test the architecture on a
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larger and more diverse dataset, which could offer insight
into the model’s generalization and potential limitations. It is
worth noting that the proposed framework can be extended
to other medical imaging modalities and utilized for other
disease detection tasks. This versatility can enhance the
impact and applicability of the proposed model, potentially
providing clinicians with powerful tools for diagnosis and
treatment planning in a variety of medical contexts.
In conclusion, the presented work introduces a novel,
lightweight architecture for the detection of Barrett’s
neoplasia, which relies exclusively on integer-based operations
and significantly reduces memory usage, rendering it suitable
for direct embedded employment using resource-constrained
medical hardware with low power consumption. We have
demonstrated that the proposed techniques achieve similar
levels of performance compared to those achieved by standard
floating-point neural networks. Moreover, the lightweight
design enhances energy efficiency, allowing for real-time
execution on a 2-Watt Coral Edge TPU, which is particularly
advantageous in the clinical context. This obtained low-
power consumption of the lightweight Barrett’s esophagus
neoplasia detection and segmentation system enables the
direct integration into standard endoscopic equipment.

REFERENCES

[1] T. G. Boers, C. H. Kusters, K. N. Fockens, J. B. Jukema, M. Jong,
J. de Groof, J. J. Bergman, F. van der Sommen, and P. H. de With,
“Barrett’s lesion detection using a minimal integer-based neural network
for embedded systems integration,” in Proceedings SPIE 12645, Medical
Imaging 2023: Computer-Aided Diagnosis. SPIE, 2023.

[2] A. J. de Groof, M. R. Struyvenberg, J. van der Putten, F. van der
Sommen, K. N. Fockens, W. L. Curvers, S. Zinger, R. E. Pouw, E. Coron,
F. Baldaque-Silva et al., “Deep-learning system detects neoplasia in
patients with barrett’s esophagus with higher accuracy than endoscopists
in a multistep training and validation study with benchmarking,” Gas-
troenterology, vol. 158, no. 4, pp. 915–929, 2020.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[4] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv :1704.04861, 2017.

[5] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in IEEE
CVPR Proceedings, 2018, pp. 7132–7141.

[6] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 2704–
2713.

[7] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks on
cifar-10,” Unpublished manuscript, 2010.

[8] R. Liu, “Higher accuracy on vision models with efficientnet-lite,”
TensorFlow Blog, 2020.

[9] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on CVPR, 2018, pp. 4510–4520.

[10] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE/CVF CVPR, 2019, pp. 2820–2828.

[11] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

[12] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer quanti-
zation for deep learning inference: Principles and empirical evaluation,”
arXiv preprint arXiv:2004.09602, 2020.

48



Linear Discriminant Analysis with unlabelled data
1st Nicolas Heintz

Dept. of Electrical Engineering, STADIUS
Dept. of Neurosciences, ExpORL

KU Leuven
Leuven, Belgium

nicolas.heintz@esat.kuleuven.be

2nd Tom Francart
Dept. of Neurosciences, ExpORL

KU Leuven
Leuven, Belgium

tom.francart@kuleuven.be

3rd Alexander Bertrand
Dept. of Electrical Engineering, STADIUS

KU Leuven
Leuven, Belgium

alexander.bertrand@esat.kuleuven.be

Abstract—Ever since Linear Discriminant Analysis (LDA) was
first introduced by Fisher [1], it has become one of the most
popular tools for (linear) classification [2]. LDA finds the linear
transformation that maximally separates two classes, in the
sense that it minimises the ratio of the variance within a class
to the distance between classes. It has a closed-form solution
that is elegant, easy to understand and cheap to compute.
Furthermore, although it only minimises the classification error
for homoscedastic Gaussian distributions, its inherent objective
function of maximally separating the classes stays relevant when
these assumptions are not met. Because of these advantages, LDA
has become a popular model in a vast array of signal processing
applications [2]–[6].

LDA has nevertheless a major drawback: it requires a good
estimation of both the class averages and the class covariances
of the relevant data. These statistics are usually estimated
using labelled training data. However, in many applications
such labelled data are not available, or is difficult to obtain.
Furthermore, if the data were sampled from a non-stationary
process, these statistics would need to be regularly re-estimated,
which is often infeasible in practice.

Surprisingly, not all the aforementioned statistics must actually
be known to compute the LDA projection. We demonstrate that
it is possible to compute the LDA projection based on unlabelled
data, if some minimal prior information is available. To be
precise, it suffices to know either (1) the class average of a
single class, (2) the difference between the class averages up to a
scaling or (3) the covariances of both classes up to a scaling. We
refer to this framework as minimally informed LDA (MILDA).
Furthermore, the MILDA model also has a closed formulation
and a comparable cost to LDA, keeping the main advantages of
LDA.

Naturally, it is unrealistic to expect that the used ground truth
statistic is exactly correct. However, even when estimation errors
are taken into account, MILDA closely matches the performance
of LDA. In fact, we show that the MILDA model becomes more
robust to estimation errors as the two classes become harder to
separate or when the classes are less balanced. These scenarios
are often the hardest for unsupervised and semi-supervised
models, making this an appealing property.
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Cardiac output (CO) plays a crucial role in determining
the delivery of oxygen to tissues and is a key metric in
hemodynamic optimization. The gold standard method for
measuring cardiac output is through thermodilution using
pulmonary artery catheter, but it is an invasive procedure asso-
ciated with complications during placement and the need for
a skilled expert to perform the measurements. An alternative
approach is to estimate cardiac output by utilizing arterial
blood pressure (ABP) measurements, which is a minimally
invasive technique. However, the relationship between ABP
and CO is not yet fully understood. Several models and
techniques have been proposed to describe the relationship
between CO and ABP such as hemodynamics models [1],
deep learning [2], and machine learning regression models
[3]. Nevertheless, existing literature inadequately addresses the
following challenges: the number of cardiac cycles required
to achieve optimal performance, and data imbalance in CO
measurements. In this study, we aim to utilize regression-
based machine learning techniques and feature engineering
to estimate CO from ABP. Hemodynamics and waveform
features, along with demographic information of the patient,
are integrated to enhance the accuracy of the model. We
utilized the publicly available VitalDB [4] (Vital Database)
waveforms to extract arterial blood pressure (ABP) waveforms,
corresponding cardiac output (CO), and patient demographic
information. We identified 47 cases (patients) that had com-
plete measurements. Each CO measurement at time T0, with
corresponding ABP at (T0−15s−T0), was considered a sample.
We collected the first 350 samples from each patient, yielding
a total of 16450 samples. After down-sampling and filtering
the signals, the following features were extracted:

Hemodynamic Waveform Demographic
Heart rate seasonality Age
Systolic pressure trend Weight
Onset pressure ACF, PACF Height
Mean pressure length BMI
Liljestrand-Zander model mean, variance, median, std
systolic area model absolute energy, entropy

After feature extraction, an imbalance in the target distri-
bution was observed, making it hard to model the relation
between ABP and CO. To deal with this problem, SINDy
(sparse identification of non-linear dynamics) algorithm [5]
was used to augment the features in an attempt to capture
the non-linear terms relating ABP features and CO. Using the
sparsely extracted features, we conducted an experiment to

investigate the optimal number of cardiac cycles needed to
achieve the best performance. We tested the performance for 2,
3, 4, 5, 6, 7, and 8 cardiac cycles using two regression models,
namely, automatic relevance determination regressor and ridge
regressor [6]. Our results indicate that 3 cardiac cycles provide
the optimal performance in terms of RMSE, MAE, r, r2,
bias, and limits of agreements. Using the optimal number of
cardiac cycles, we tested seven regression models, including
linear regressor, ridge regressor, kernel ridge regressor, support
vector machine regressor, random forest regressor, decision
tree regressor, and XGBoost regressor. To ensure the reliability
of our results, we validated the models using leave-one-patient-
out cross-validation. Our findings demonstrate that ridge is the
most effective model that fits the data, achieving an RMSE of
1.129, MAE of 0.994, r of 0.798, r2 of 0.630, a bias of -0.01,
and limits of agreement of -2.32 and 2.30.

Fig. 1. (left) Four-quadrant, (mid) Bland-Altman (right) Tracking-ability.
For future work, we aim to enhance our study by incorpo-

rating additional data and exploring the identification of ABP
dynamics and its relation to CO.
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I. INTRODUCTION
The topic of camera calibration has been of great interest

in the Computer Vision community for decades. Extrinsic
and intrinsic calibration is required for applications such as
sports video broadcasting, object localization and immersive
imaging. A multitude of methods and algorithms have been
proposed to perform semi-automated calibration in different
contexts. Unfortunately, these methods are often impractical in
real-world setups such as traffic surveillance cameras, which
require frequent and automated re-calibration. We propose
a method for automated calibration of traffic cameras that
requires only the topview image of an intersection and its
semantically segmented map. Our method brings two improve-
ments to the SOTA approaches: a novel loss function called
Topological Loss (TL) and a custom implementation of the
Spatial Transformer Network (STN) [1].

Fig. 1. Architecture of the proposed model. The homography Ĥ is estimated
by three so-called Localization Blocks (LocBlock) and three fully connected
(FC) layers. The two matrices Ĥ and H∗

K are multiplied to produce the final
homography H. The model warps the bird’s-eye view with H to generate the
image Ŷ .

II. METHOD
We generate thousands of homographies by sampling in-

trinsic parameters, rotation angles and camera translations. We
use these homographies to warp both topviews and generate
virtual camera views. The camera views are split in training,
testing and dictionary splits. The segmentation component of
our proposed model, shown in Figure 1, semantically segments
the input image and produces a semantic map. The second
component of our model, a Siamese network, retrieves the
closest match for the semantic map from the dictionary of
templates. The two images are concatenated across the channel
dimension and passed to the thirs component of our model,
the STN. Our implementation of the STN consists of three
Localization Blocks, each containing three convolutions con-
nected via skip connect and followed by batch normalization
and GELU activation. Finally, a self-attention layer and three
fully-connected layers estimate an homography matrix. The
homography of the matched image and the estimated one are
multiplied to obtain the final homography. The topview is then

Fig. 2. MSE and LTop-MSE scores between two patches. Notice that, using
MSE, the patch would be considered almost completely correct while using
LTop-MSE, the error is quite large.

warped with the resulting homography. The image created
by the model and the semantic ground truth used for the
segmentation component are compared using a pixel-based
loss function. Comparing two semantic images in this way
incurs in the pitfall of parts of the images being identical
while depicting very different parts of the intersection. To
address this problem, our TL splits the two images is patches
and computes a score between corresponding patches using a
pixel-based loss function such as MSE or Dice Loss as shown
in Figure 2. Each patch’s score is summed to the scores of its
neighbouring patches to enforce the model to generate images
consistent with the topology of the intersection.

TABLE I
IOU SCORES.

Method Measured IoU
LTop-MSE MSE LTop-Dice Dice

Sha et al. 75.93% 75.15% 76.18% 74.77%
Ours 85.12% 83.29% 87.00% 84.71%

III. RESULTS
We compare the proposed model and loss function with the

previous SOTA model proposed by Sha et al. [2], which used
a similar approach. The performance improvement brought by
TL can be noticed by comparing adjacent columns in Table I.
We implemented TL using both Dice Loss and MSE to show
that the idea behind it is sound. The STN improvement can be
observed by comparing the rows in the table. The combination
of TL and the new STN improves upon the competitor’s results
by up to 11%.

IV. CONCLUSION
Our proposed model and loss function proved to be very

effective to automatically re-calibrate traffic surveillance cam-
eras. Future work should focus on improving the matching
component.
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I. INTRODUCTION

With the advent of streaming and video technologies, there
has been a significant shift in the way information is presented,
especially in fields such as healthcare [1], education, history,
and art. Efficiently accessing, filtering, and navigating digital
content is a top priority for scholars who wish to make the
most of their time and resources.

Deep learning methods have proved crucial in this search
process, helping scholars streamline their search by eliminat-
ing irrelevant data and enabling them to focus on the most
pertinent information. This integration of deep learning has
paved the way for a more effective way of leveraging digital
resources, allowing scholars to make the most of the vast
amount of data available to them. However, the problem of
deep learning methods, which rely on global descriptors, has
made it difficult for scholars to efficiently navigate content.
The need for a more effective means of indexing, retrieving,
and filtering through digital resources has become increasingly
important, leading scholars to explore the potential of local
descriptors.

Local descriptors are a powerful tool that provides an
efficient solution for searching digital content, allowing schol-
ars to concentrate on specific aspects of the data, and their
importance in various fields cannot be overstated; however,
their reliance on manual feature extraction and the need for
large amounts of annotated data are significant limitations [2].

To address these issues, we propose a hybrid feature
extraction method, providing scholars with a powerful tool
for accessing and utilizing digital materials efficiently. Local
features can help to identify distinctive keypoints that are
robust to noise and geometric transformations, while global
features can help to resolve ambiguities and confirm the

consistency of the matching across the entire image. This
approach enables scholars to focus on relevant aspects of data,
thereby enhancing the search process.

II. METHODOLOGY

In this paper, we propose decomposing the task into two
stages: detecting keyframes and conducting content-based im-
age retrieval (CBIR), shown in Figure 1.

A. Key Frame Extraction

The first stage of the proposed video retrieval method
involves downsampling the input query video using a color
histogram-based clustering algorithm [3]. To increase effi-
ciency, SVD dimensionality reduction is applied to the feature
matrix. The clustering algorithm uses cosine similarity to
cluster the feature space and extract keyframes while main-
taining relevant information for future retrieval stages. This
method extracts keyframes effectively while retaining pertinent
information for later stages of the retrieval process.

B. Content-Based Image Retrieval

In the second stage, CBIR involves Feature Extraction (FE)
and Search and Match (SaM). Feature extraction plays a
critical role in achieving both efficiency and accuracy. The
global features are extracted with the help of a pre-trained,
compact CNN backbone. Table 2 shows that out of all the
state-of-art pre-trained networks, MobileNetV2 [4] has the
highest ratio of video duration time and computation time.
This represents a significant improvement in performance,
expediting video search by twice as faster for a CBIR system
with VGG16 or ResNet50. Employing a shallower network
(MobileNetV2) as the backbone saves more time, though it
may come at the expense of a marginal reduction in accuracy
[5].

To address this issue, hybrid feature extraction can be
achieved by fusing both global and local features. The fusion
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Fig. 1: The pipeline of the Image Retrieval from Video.

structure is a cascade. The first block of the structure consists
of feature extraction through local features such as SIFT,
SURF, and ORB [6]. Next, the ranking will proceed to
eliminate unnecessary gallery frames per query image. The
elimination of non-relevant gallery frames is handled by a
low threshold value. Afterward, the same process of feature
extraction and ranking proceeded on gallery frames after the
elimination of non-relevant frames. The second block of the
structure is defined as a re-ranking. This stage contains global
feature extraction using a compact CNN network. The dataset
consists of the extracted frames from the KFE module.

Additionally, approximate nearest-neighbor (ANN) search
methods are utilized in the search process to find the top-K
closest features to the query feature [7]. The contribution of
this paper is to provide image retrieval from a video system
with high efficiency and accuracy that could be applied in
various types of research to expedite their search process.

III. EXPERIMENTS AND RESULTS

The retrieval accuracy and computational efficiency trade-
off is frequently available in retrieval tasks. The specific fea-
ture extraction and similarity assessment approaches utilized

have a significant impact on the magnitude of this trade-off.
High retrieval accuracy necessitates the use of complicated
similarity measures and advanced feature extraction algo-
rithms, both of which can be computationally expensive. On
the other hand, by using simpler feature extraction techniques
and similarity measures, a CBIR system that has been opti-
mized for computational efficiency may have lower retrieval
accuracy. As a result, the balance between retrieval accuracy
and computational efficiency must be carefully considered
while designing and developing CBIR systems, and depending
on the needs of the application, appropriate trade-offs may
need to be made. In order to validate the system, two main
tests are applied: a computation time test for various CNN
backbones and classical local feature extraction algorithms
and a test to calculate the mean average precision using the
Oxford5k dataset [8].

A. Computation Time

Two separate tests are conducted in terms of computa-
tion time for algorithms with global features and algorithms
with local features. The testing dataset contains historical
videos. For local features, SIFT, ORB, SURF, KAZE, AKAZE,
and BRISK algorithms are tested. For global features, Mo-
bileNetV2, ResNet50, InceptionV3, VGG19, VGG16, Effi-
cientNet, and DenseNet CNN backbones are tested. The
metric for this test is the ratio between video duration and
computation time. The test results provide the network which
is exceptionally efficient in terms of computation time is
MobileNetV2 from Figure 2. The achieved average ratio
between video duration and computation time is 38.7. For the
test on local feature extraction algorithms, ORB outperforms
other algorithms with the average ratio between video duration
and computation time of 208.8 as shown in Figure 3.

Video 

Name MobileNetV2 ResNet50 InceptionV3 VGG19 VGG16 EfficientNet DenseNet

Battuta_1 48.8 26.5 37.5 15.8 17.9 34.1 24.0

Battuta_2Tik 49.3 32.0 33.7 29.2 33.2 33.6 22.5

Battuta_3APS 65.8 38.2 51.5 23.7 28.7 48.9 32.3

Battuta_4GEAT 45.4 23.4 35.9 15.8 19.0 35.0 21.8

Battuta_5GTH 45.7 22.8 36.6 14.8 17.7 36.3 22.2

Battuta_6Ttruefig 32.5 15.4 25.8 9.7 11.8 25.2 15.2

He_1 28.4 17.4 23.7 11.2 13.3 22.8 15.6

He_2Tik 16.8 10.1 13.7 7.1 8.4 10.5 6.9

He_3Tik 21.2 10.7 16.5 7.3 8.8 16.7 9.9

He_4Tik 32.7 20.4 25.6 14.3 17.1 25.5 16.7

Average 38.7 21.7 30.1 14.9 17.6 28.8 18.7

Fig. 2: The ratio of video duration time and computation time for state-of-art
pre-trained CNN backbones.

B. Accuracy - mAP

Oxford5k is a set of images (5,062) with 1024x768 res-
olution comprising 11 different landmark buildings in the
Oxford5k database. And there are 55 query images for the
ground truth evaluation. This dataset is one of the benchmark
open-source databases for retrieval tasks. The ground truth
for each query consists of both easy as in Figure 4 and
challenging in Figure 5 retrieval tasks to observe the accuracy
of the system. The setting of this test consists of a pre-trained
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Video Name

Video 

Duration 

(s) SIFT SURF ORB KAZE AKAZE BRISK

Battuta_1 261.0 12.7 8.9 64.7 3.5 20.3 24.5

Battuta_2Tik 52.0 91.1 62.6 460.2 26.5 147.3 183.1

Battuta_3APS 188.0 13.5 8.2 74.8 3.3 19.7 18.7

Battuta_4GEAT 236.0 11.8 7.7 53.6 3.5 20.2 14.2

Battuta_5GTH 446.0 16.3 9.6 71.5 4.2 26.0 25.2

Battuta_6truefig 440.0 12.3 9.0 64.5 3.0 17.8 30.1

He_1 254.0 21.5 15.8 118.5 6.5 36.7 31.1

He_10 560.0 24.9 19.7 128.1 6.0 34.4 60.5

He_11 187.0 37.5 28.7 238.8 9.4 52.0 98.3

He_12 55.0 35.1 32.5 182.1 8.9 49.7 58.8

He_2Tik 59.0 14.8 12.2 76.5 4.7 29.3 45.2

He_3Tik 106.0 26.1 27.8 221.8 8.0 41.7 102.8

He_4Tik 180.0 47.4 36.6 201.1 10.3 74.7 94.4

He_5Tik 59.0 53.9 58.6 366.5 14.6 92.0 173.5

He_6Tik 53.0 88.8 93.5 757.1 22.7 143.6 321.2

He_7GC 105.0 16.4 14.4 137.4 3.6 20.4 107.1

He_8mrgg 215.0 43.0 37.5 154.1 15.5 90.8 53.3

He_9gcme 355.0 23.0 16.7 130.4 6.6 36.3 42.1

Polo_1 323.0 21.1 13.7 97.1 5.8 33.9 24.9

Polo_2Tik 45.0 52.7 41.1 243.2 11.7 82.1 87.0

Polo_3Map 660.0 32.6 31.7 213.5 7.2 42.0 105.0

Polo_4JEB 131.0 95.5 80.1 472.9 24.9 166.7 199.1

Polo_5WGE 1121.0 51.8 40.5 339.0 13.2 76.4 102.3

Polo_6advan 815.0 29.0 17.4 143.9 7.6 45.2 38.0

Average 287.8 36.4 30.2 208.8 9.6 58.3 85.0

Fig. 3: The ratio of video duration time and computation time for classical
(local) FE algorithms.

MobileNetV2 network. As a result of the test, mAP is 39.4 and
the average accuracy is 0.439. The results show that the mean
average precision is not high enough for a reliable retrieval
system with only global MobileNetV2 features. To tackle this
issue, the cascaded system with local and global descriptors is
proposed that can lead to higher accuracy compared to only
utilizing global features from a compact network [9].

Fig. 4: Easy Task of the Image Retrieval from Oxford5k dataset.

Fig. 5: Challenging Task of the Image Retrieval from Oxford5k dataset.

IV. CONCLUSION

In this paper, we proposed a method for efficient content-
based image retrieval of video resources using a hybrid feature
extraction method that combines local descriptors and global
features in a cascade structure. We decomposed the task into
two stages: keyframe extraction and content-based image re-
trieval. In the keyframe extraction stage, a clustering algorithm
is used to extract keyframes from the input query video, while
in the content-based image retrieval stage, a compact deep
learning network (MobileNetV2) is used for global feature
extraction. For local feature extraction, the ORB algorithm
is proposed to be implemented. Our proposed method is a
promising step for providing scholars with a powerful tool
for accessing and utilizing digital materials efficiently, thereby
enhancing the search process.
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I. CONTEXT AND RESEARCH GOAL

To contribute to Climate Change mitigation [1], mobile
network operators have committed to reduce their carbon
footprint, as well as other ICT companies [2]. A large part
of it is caused by the electricity consumption of their radio
access networks (RANs), in addition to the base station (BS)
manufacturing, their maintenance, etc [2]. Moreover, in the last
months, electricity prices became very volatile and globally
went up, thereby increasing the operating costs of RANs. This
is an additional incentive for operators to reduce the electricity
consumption of their RANs, while trying to maintain an
acceptable quality of service (QoS) for their subscribers.

In [3], we proposed a model to evaluate the RAN power
consumption at a country-wide level for six deployment areas
and variable traffic loads. We also proposed power models for
few types of 4G and 5G BSs with respect to the hourly average
data traffic. In this work, we propose a method for evaluating
the QoS and the power consumption of the RAN over shorter
time intervals. We also consider configurable BSs with various
features and component specifications. It applies to all levels
of time-frequency loads and to a variable number of users.

II. MODEL DESCRIPTION

The model covers several generic deployment areas, e.g.
rural, suburban, urban, etc. Therefore, it does not need to be
specific to a given BS layout and we hence consider a regular
hexagonal layout of 3-sector BSs with a central BS of interest
surrounded by interfering neighboring BSs arranged in several
concentric rings. The time discretization of the model is based
on transmission time intervals (TTIs) of 1 ms. In this work,
only downlink data traffic is included as it is currently the
main driver for the deployment of more capacity with new
BSs and it induces most of the power consumption.

For evaluating the QoS and the power consumption of
a given network configuration (i.e., in a given deployment
area, with a particular inter-site distance, carrier frequency,
bandwidth, multi-antenna configuration, maximum transmitted
power, etc.), we generate random and independent bandwidth
loads for each BS cell of the regular network and each TTI
within the studied time period. The probability of having one
or more active users in a cell depends on the user density

This work is funded by Proximus NV/SA.

in the studied area and the network usage rate per user. This
allows to vary the network load from an idle network to a
congested one with respect to the time-frequency resources.
We then compute the QoS and the power consumption of
each realization for each network load and we finally compute
average metrics for the BS of interest throughout the studied
time period. In a given network configuration, the QoS of
a cell depends on the number of active users it serves and
the number of neighboring BSs that interfere with it. The BS
power consumption depends on the number of its sectors that
are active and on their respective bandwidth load. Generally
speaking, the BS power model is non-linear (e.g. the BS can
enter sleep mode when none of its sectors is active).

To speed up computations, we reduce the total number of
possible network states by considering only two states for
each BS cell: (i) the idle state when no user is active and
no data is transmitted, the load is then 0% and only signaling
is transmitted (if applicable), and (ii) the fully active state
when one or more users are active in the cell and 100% of
the bandwidth is occupied by data and signaling. Since there
are two possible states for each cell, there are 23n possible
state combinations for a network containing n BSs (and 3n
cells). Therefore, we evaluate only specific network state
combinations out of the entire set of possible combinations and
interpolate the network QoS for the intermediate combinations.
This technique produces consistent results.

III. FUTURE WORK

The next step is to validate the proposed theoretical model
with on-site BS measurements and to fine-tune the model
parameters with realistic values. We will also include the
carbon footprint evaluation by considering the production of
the BSs in addition to the emissions due to their electricity
consumption during the use phase. In the end, our model will
serve to optimize future RAN deployments in order to reduce
their total power consumption and carbon footprint.
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I. INTRODUCTION

Intersection-topology descriptions can help to improve traf-
fic flow, safety and CO2 emissions, in addition to being a
valuable tool for autonomous vehicle navigation. However,
they currently require significant manual effort for creating
useful descriptions. This paper describes ongoing work on
automated algorithms to extract the vehicle drive-lines in
the entry and exit lanes of intersections, using the annually
captured Cyclomedia imagery and point clouds.

Our previous work [1] derived the drive lines from the paint
striping and road edges, but this resulted into several rule-
based post-processing steps and did not account for merging
and splitting lanes. This paper presents experiments on direct
extraction of drive lines from aerial images. We outline the
processing pipeline and compare with alternative algorithms
for drive-line extraction.

II. METHOD

The system comprises three steps: (1) segmentation, (2) line
extraction, (3) line clustering.

a) Segmentation: For line segmentation, a U-Net is used
to generate a binary mask with the drive lines as foreground
and the rest as background information. In the training data, we
mark the conflict area of each intersection and many secondary
roads as ”to-be-ignored”.

b) Line Extraction: For line extraction, we experiment
with and compare three alternative methods. The first one
is the well-known probabilistic Hough transform. The second
method, LCNN [2], is designed as an end-to-end network to
predict lines of wire frames. However, LCNN training on aerial
color images did not yield useful results. Hence, following the
work by Liu et al. [3], we instead use the binary segmentation
mask as input. The third method for comparison is NEFI [4],
which was designed to extract graphs from images like road
networks. All three methods result in drive-line proposals.

c) Line Clustering: Line clustering further merges the
line proposals using a hierarchical approach, as previously
presented for clustering paint striping and edge-of-road [1].

III. EXPERIMENTAL RESULTS

The dataset consists of 67 urban and 70 rural highway
scenes in the Netherlands. From this set, 29 urban and
18 highway scenes are used for testing. Each image has
2048×2048 pixels and a resolution of approximately 10 cm
per pixel. To evaluate the results, the segmentation mask is
generated from the line clustering results and compared with
the ground-truth segmentation mask. Table I illustrates the

Fig. 1: Example results of the pipeline with LCNN.

Highway Intersections
Recall Precision Recall Precision

Hough 0.48 0.56 0.11 0.52
NEFI 0.48 0.38 0.24 0.23
LCNN 0.61 0.44 0.31 0.34

TABLE I: Recall and precision for the final, rendered masks.

results for line extraction. Evidently, recall scores are lower
than in generic object-segmentation problems, since drive lines
and their boundaries are not strictly defined.

IV. DISCUSSION AND CONCLUSIONS

This paper confirms that ill-defined drive lines can be
learned by a segmentation network. Hough line extraction
is not suited for extracting drive lines for intersections on
these image scales, but this might be improved by running
at a smaller scale. Finally, the results show that LCNN is a
promising algorithm for drive-line extraction, increasing the
recall from 0.11 and 0.24 to 0.31. We expect to move forward
towards end-to-end training and if insufficient, resort to graph-
based modeling using traffic-junction classification.
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Abstract—A new method for joint range and phase offset
estimation of multiple transponder-equipped aviation vehicles,
including manned aerial vehicles (MAVs) and unmanned aerial
vehicles (UAVs) is proposed in this paper. The proposed method
employs the overlapping secondary surveillance radar signals
for ranging and phase offset estimation prior to decoding of
the overlapping signals; hence, it can ameliorate aviation air
safety when packet decoding is infeasible due to packet collision.
The overlapping signals can be Mode A, C, S, and ADS-B.
Moreover, the proposed estimator enables coherent detection of
a single or collided multiple secondary surveillance radar signals
with a lower packet error rate (PER) compared to non-coherent
detection. This results in significant performance improvement in
active multiple target tracking and cooperative sense and avoid
systems.

To derive the joint estimator, first, by minimizing the Kull-
back–Leibler Divergence (KLD) as a measure of difference be-
tween probability densities, we analytically show that the complex
received baseband of the overlapping secondary surveillance
radar signals coming from aviation vehicles can be approximated
by an independent and identically distributed (i.i.d.) Gaussian
Mixture (GM) random variable. Then, we employ the Expecta-
tion–Maximization (EM) algorithm to estimate the modes of the
Gaussian mixture followed by a reordering estimation technique
through combinatorial optimization to estimate range and phase
offset of the aviation vehicles.

The effectiveness of the proposed estimator is supported by
simulation results for different number of aviation vehicles for
Mode A, C, S, and ADS-B overlapping signals. We show that
the proposed estimator can accurately estimate the range of
multiple transponder-equipped aviation vehicles in the presence
of different overlapping secondary surveillance radar signals.
Moreover, our proposed joint estimator outperforms the state
of the art methods [2] and [3] since our approach employs the
whole observation samples including the overlapping snapshot;
however, the methods in [2] and [3] rely on the non-overlapping
snapshot for packet recovery. Hence, as the delay between the
reception of two packets decreases, their performance degrades.

Index Terms—Ranging, phase offset, Mode S expecta-
tion–maximization (EM), Gaussian mixture (GM), multiple an-
tenna, sense and avoid (SAA).
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The joint ranging and phase offset estimation for only ADS-B signals was
investigated in [1] and it is under submission. This paper extends the previous
work to the general case of secondary surveillance radar signals, such as Mode
A, C, and S.

Fig. 1: Packet collision of secondary surveillance radar signals.
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Fig. 2: The reception of the Mode A, C, B, and ADS-B signals of the
aviation vehicles at the receiver. Different colors are used to show
the Mode A, C, B, and ADS-B signals of the aviation vehicles. The
range and phase offset are estimated from the overlapping packets.
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(a) Range estimation for K = 3 aviation vehicles
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(b) Phase Offset (PO) estimation for K = 3 aviation vehicles

Fig. 3: The performance of the proposed joint EM-based estimator for three aviation vehicles with transmit power P1 = P2 = P3 = 51
dBm, and range r1, r2, r3 ∈ Uc[1, 10] Km. The number of receive antennas is Nr = 5, and αr and αr denote the percentage error for
range and phase, respectively. We also define Pout,r ≜ 1

K
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KNr
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}

for K = 3. The receiver filter bandwidth is denoted by B.
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